๋ณธ๋ฌธ ๋ฐ”๋กœ๊ฐ€๊ธฐ

1๏ธโƒฃ AI•DS/๐Ÿ“’ Deep learning25

[๋”ฅ๋Ÿฌ๋‹ ํŒŒ์ดํ† ์น˜ ๊ต๊ณผ์„œ] ์ž์—ฐ์–ด์ฒ˜๋ฆฌ๋ฅผ ์œ„ํ•œ ์ž„๋ฒ ๋”ฉ ๋”๋ณด๊ธฐ ๐Ÿ‘€ ์ž„๋ฒ ๋”ฉ • ์ž„๋ฒ ๋”ฉ : ์‚ฌ๋žŒ์˜ ์–ธ์–ด๋ฅผ ์ปดํ“จํ„ฐ๊ฐ€ ์ดํ•ดํ•  ์ˆ˜ ์žˆ๋Š” ์–ธ์–ด (์ˆซ์ž) ํ˜•ํƒœ์ธ ๋ฒกํ„ฐ๋กœ ๋ณ€ํ™˜ํ•œ ๊ฒฐ๊ณผ • ์ž„๋ฒ ๋”ฉ์˜ ์—ญํ•  โ†ช ๋‹จ์–ด ๋ฐ ๋ฌธ์žฅ ๊ฐ„ ๊ด€๋ จ์„ฑ ๊ณ„์‚ฐ โ†ช ์˜๋ฏธ์  ํ˜น์€ ๋ฌธ๋ฒ•์  ์ •๋ณด์˜ ํ•จ์ถ• (ex. ์™•-์—ฌ์™•, ๊ต์‚ฌ-ํ•™์ƒ) โ‘  ํฌ์†Œํ‘œํ˜„ ๊ธฐ๋ฐ˜ ์ž„๋ฒ ๋”ฉ : ์›ํ•ซ์ธ์ฝ”๋”ฉ • Sparse representation : ๋Œ€๋ถ€๋ถ„์˜ ๊ฐ’์ด 0์œผ๋กœ ์ฑ„์›Œ์ ธ ์žˆ๋Š” ๊ฒฝ์šฐ๋กœ ๋Œ€ํ‘œ์ ์ธ ๋ฐฉ๋ฒ•์ด ์›ํ•ซ์ธ์ฝ”๋”ฉ • ์›ํ•ซ์ธ์ฝ”๋”ฉ : ๋‹จ์–ด N ๊ฐœ๋ฅผ ๊ฐ๊ฐ N ์ฐจ์›์˜ ๋ฒกํ„ฐ๋กœ ํ‘œํ˜„ํ•˜๋Š” ๋ฐฉ์‹ from sklearn import preprocessing label_encoder = preprocessing.LabelEncoder() onehot_encoder = preprocessing.OneHotEncoder() a = label_encoder.. 2022. 12. 30.
[๋”ฅ๋Ÿฌ๋‹ ํŒŒ์ดํ† ์น˜ ๊ต๊ณผ์„œ] 7์žฅ ์‹œ๊ณ„์—ด I 1๏ธโƒฃ ์‹œ๊ณ„์—ด ๋ฌธ์ œ ๐Ÿ”น ์‹œ๊ณ„์—ด ๋ถ„์„์ด๋ž€ โ†ช ์‹œ๊ฐ„์— ๋”ฐ๋ผ ๋ณ€ํ•˜๋Š” ๋ฐ์ดํ„ฐ๋ฅผ ์‚ฌ์šฉํ•ด ์ถ”์ด๋ฅผ ๋ถ„์„ํ•˜๋Š” ๊ฒƒ์œผ๋กœ ์ฃผ๊ฐ€/ํ™˜์œจ๋ณ€๋™, ๊ธฐ์˜จ/์Šต๋„๋ณ€ํ™” ๋“ฑ์ด ๋Œ€ํ‘œ์ ์ธ ์‹œ๊ณ„์—ด ๋ถ„์„์— ํ•ด๋‹นํ•œ๋‹ค. โ†ช ์ถ”์„ธํŒŒ์•…, ํ–ฅํ›„์ „๋ง ์˜ˆ์ธก์— ์‹œ๊ณ„์—ด ๋ถ„์„์„ ์‚ฌ์šฉํ•œ๋‹ค. ๐Ÿ”น ์‹œ๊ณ„์—ด ํ˜•ํƒœ โ†ช ๋ฐ์ดํ„ฐ ๋ณ€๋™ ์œ ํ˜•์— ๋”ฐ๋ผ ๊ตฌ๋ถ„ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ถˆ๊ทœ์น™๋ณ€๋™ ์˜ˆ์ธก ๋ถˆ๊ฐ€๋Šฅํ•˜๊ณ  ์šฐ์—ฐ์ ์œผ๋กœ ๋ฐœ์ƒํ•˜๋Š” ๋ณ€๋™. ์ „์Ÿ, ํ™์ˆ˜, ์ง€์ง„, ํŒŒ์—… ๋“ฑ ์ถ”์„ธ๋ณ€๋™ GDP, ์ธ๊ตฌ์ฆ๊ฐ€์œจ ๋“ฑ ์žฅ๊ธฐ์ ์ธ ๋ณ€ํ™” ์ถ”์„ธ๋ฅผ ์˜๋ฏธํ•œ๋‹ค. ์žฅ๊ธฐ๊ฐ„์— ๊ฑธ์ณ ์ง€์†์ ์œผ๋กœ ์ฆ๊ฐ€, ๊ฐ์†Œํ•˜๊ฑฐ๋‚˜ ์ผ์ • ์ƒํƒœ๋ฅผ ์œ ์ง€ํ•˜๋ ค๋Š” ์„ฑ๊ฒฉ์„ ๋ˆ๋‹ค. ์ˆœํ™˜๋ณ€๋™ 2~3๋…„ ์ •๋„์˜ ์ผ์ •ํ•œ ๊ธฐ๊ฐ„์„ ์ฃผ๊ธฐ๋กœ ์ˆœํ™˜์ ์œผ๋กœ ๋‚˜ํƒ€๋‚˜๋Š” ๋ณ€๋™ ๊ณ„์ ˆ๋ณ€๋™ ๊ณ„์ ˆ์ ์ธ ์˜ํ–ฅ๊ณผ ์‚ฌํšŒ์  ๊ด€์Šต์— ๋”ฐ๋ผ 1๋…„ ์ฃผ๊ธฐ๋กœ ๋ฐœ์ƒํ•˜๋Š” ๊ฒƒ์„ ์˜๋ฏธ ๐Ÿ”น ์‹œ๊ณ„์—ด ๋ฐ์ดํ„ฐ โ†ช ๊ทœ์น™์  ์‹œ๊ณ„์—ด vs ๋ถˆ๊ทœ.. 2022. 11. 10.
[๋”ฅ๋Ÿฌ๋‹ ํŒŒ์ดํ† ์น˜ ๊ต๊ณผ์„œ] 5์žฅ ํ•ฉ์„ฑ๊ณฑ ์‹ ๊ฒฝ๋ง โ…  https://colab.research.google.com/drive/1uB-7ckV-Mrh0Zfugv9OIm7QuM_j2OLg5?usp=sharing [๋”ฅ๋Ÿฌ๋‹ ํŒŒ์ดํ† ์น˜ ๊ต๊ณผ์„œ] chapter 05 ํ•ฉ์„ฑ๊ณฑ ์‹ ๊ฒฝ๋ง.ipynb Colaboratory notebook colab.research.google.com 1๏ธโƒฃ ํ•ฉ์„ฑ๊ณฑ ์‹ ๊ฒฝ๋ง ๐Ÿ”น ํ•ฉ์„ฑ๊ณฑ ์ธต์˜ ํ•„์š”์„ฑ ๐ŸŒ  ์—ฐ์‚ฐ๋Ÿ‰ ๊ฐ์†Œ • ์ด๋ฏธ์ง€ ์ „์ฒด๋ฅผ ํ•œ ๋ฒˆ์— ๊ณ„์‚ฐํ•˜๋Š” ๊ฒƒ์ด ์•„๋‹Œ, ๊ตญ์†Œ์ ์ธ ๋ถ€๋ถ„์„ ๊ณ„์‚ฐํ•จ์œผ๋กœ์จ ์‹œ๊ฐ„๊ณผ ์ž์›์„ ์ ˆ์•ฝํ•˜๊ณ  ์ด๋ฏธ์ง€์˜ ์„ธ๋ฐ€ํ•œ ๋ถ€๋ถ„๊นŒ์ง€ ๋ถ„์„ํ•  ์ˆ˜ ์žˆ๋Š” ์‹ ๊ฒฝ๋ง ๐ŸŒ  ์ด๋ฏธ์ง€/์˜์ƒ ์ฒ˜๋ฆฌ์— ์œ ์šฉํ•œ ๊ตฌ์กฐ • 1์ฐจ์› ๋ฒกํ„ฐ๋กœ ํŽผ์ณ์„œ ๊ฐ€์ค‘์น˜๋กœ ๊ณ„์‚ฐํ•˜์ง€ ์•Š๊ณ , ์ด๋ฏธ์ง€ ๋ฐ์ดํ„ฐ์˜ ๊ณต๊ฐ„์  ๊ตฌ์กฐ (์˜ˆ. 3x3) ๋ฅผ ์œ ์ง€ํ•˜๊ธฐ ์œ„ํ•ด ํ•ฉ์„ฑ๊ณฑ์ธต์ด ์กด์žฌํ•œ๋‹ค. • ๋‹ค์ฐจ์› ๋ฐฐ์—ด ๋ฐ์ดํ„ฐ.. 2022. 10. 6.
[๋”ฅ๋Ÿฌ๋‹ ํŒŒ์ดํ† ์น˜ ๊ต๊ณผ์„œ] 4์žฅ ๋”ฅ๋Ÿฌ๋‹ ์‹œ์ž‘ https://colab.research.google.com/drive/1j9ghqmP-QboSbipZ7LjzbRrpTq4Mhqo8?usp=sharing [๋”ฅ๋Ÿฌ๋‹ ํŒŒ์ดํ† ์น˜ ๊ต๊ณผ์„œ] chapter 04 ๋”ฅ๋Ÿฌ๋‹ ์‹œ์ž‘.ipynb Colaboratory notebook colab.research.google.com 1๏ธโƒฃ ์ธ๊ณต ์‹ ๊ฒฝ๋ง์˜ ํ•œ๊ณ„์™€ ๋”ฅ๋Ÿฌ๋‹ ์ถœํ˜„ ๐Ÿ”น XOR ๋น„์„ ํ˜• ๋ฌธ์ œ ๐ŸŒ  ํผ์…‰ํŠธ๋ก  • ์„ ํ˜• ๋ถ„๋ฅ˜๊ธฐ๋กœ ๋”ฅ๋Ÿฌ๋‹์˜ ๊ธฐ์›์ด ๋˜๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜ • ๋‹ค์ˆ˜์˜ ์‹ ํ˜ธ๋ฅผ ์ž…๋ ฅ์œผ๋กœ ๋ฐ›์•„ ํ•˜๋‚˜์˜ ์‹ ํ˜ธ (1 ๋˜๋Š” 0 : ํ๋ฅธ๋‹ค/์•ˆํ๋ฅธ๋‹ค) ๋ฅผ ์ถœ๋ ฅ ๐ŸŒ  ๋…ผ๋ฆฌ ๊ฒŒ์ดํŠธ • OR ๊ณผ AND ๊ฒŒ์ดํŠธ๋Š” ๋ฐ์ดํ„ฐ๊ฐ€ ์„ ํ˜•์ ์œผ๋กœ ๋ถ„๋ฆฌ๋œ๋‹ค. • XOR ๊ฒŒ์ดํŠธ๋Š” ๋ฒ ํƒ€์  ๋…ผ๋ฆฌํ•ฉ ๊ตฌ์กฐ (์ž…๋ ฅ ๋‘๊ฐœ ์ค‘ ํ•œ๊ฐœ๋งŒ 1์ผ ๋•Œ ์ž‘๋™ํ•˜๋Š” ๋…ผ๋ฆฌ์—ฐ์‚ฐ) ๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ๋Š”๋ฐ, ์ด.. 2022. 10. 4.
[๋”ฅ๋Ÿฌ๋‹ ํŒŒ์ดํ† ์น˜ ๊ต๊ณผ์„œ] 2์žฅ ์‹ค์Šต ํ™˜๊ฒฝ ์„ค์ •๊ณผ ํŒŒ์ดํ† ์น˜ ๊ธฐ์ดˆ โœ… ํŒŒ์ดํ† ์น˜ ๊ธฐ์ดˆ https://colab.research.google.com/drive/1ki4W3rwTExhmZp5E-Ic81ab2NMe8iRHB?usp=sharing [๋”ฅ๋Ÿฌ๋‹ ํŒŒ์ดํ† ์น˜ ๊ต๊ณผ์„œ] chapter 02 ํŒŒ์ดํ† ์น˜ ๊ธฐ์ดˆ.ipynb Colaboratory notebook colab.research.google.com 1๏ธโƒฃ ํŒŒ์ดํ† ์น˜ ๊ฐœ์š” ๐Ÿ”น ํŠน์ง• ๋ฐ ์žฅ์  โˆ˜ ์—ฐ์‚ฐ์„ ์œ„ํ•œ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ → ๋”ฅ๋Ÿฌ๋‹ ํ”„๋ ˆ์ž„์›Œํฌ๋กœ ๋ฐœ์ „ โˆ˜ GPU ์—์„œ ํ…์„œ ์กฐ์ž‘ ๋ฐ ๋™์  ์‹ ๊ฒฝ๋ง ๊ตฌ์ถ•์ด ๊ฐ€๋Šฅํ•œ ํ”„๋ ˆ์ž„์›Œํฌ โœ” GPU : ์—ฐ์‚ฐ์„ ๋น ๋ฅด๊ฒŒ ํ•˜๋Š” ์—ญํ• , ๋‚ด๋ถ€์ ์œผ๋กœ CUDA, cuDNN ๊ฐ™์€ API ๋ฅผ ํ†ตํ•ด ์—ฐ์‚ฐ ๊ฐ€๋Šฅ โœ” ํ…์„œ : ํŒŒ์ดํ† ์น˜์˜ ๋ฐ์ดํ„ฐ ํ˜•ํƒœ๋กœ, ๋‹ค์ฐจ์› ํ–‰๋ ฌ ๊ตฌ์กฐ๋ฅผ ๊ฐ€์ง„๋‹ค. .cuda() ๋ฅผ ์‚ฌ์šฉํ•ด GPU ์—ฐ์‚ฐ์„ ์ˆ˜ํ–‰ํ•  .. 2022. 9. 23.
[๋”ฅ๋Ÿฌ๋‹ ํŒŒ์ดํ† ์น˜ ๊ต๊ณผ์„œ] 1์žฅ ๋จธ์‹ ๋Ÿฌ๋‹๊ณผ ๋”ฅ๋Ÿฌ๋‹ โœ… ๋จธ์‹ ๋Ÿฌ๋‹๊ณผ ๋”ฅ๋Ÿฌ๋‹ 1๏ธโƒฃ ์ธ๊ณต์ง€๋Šฅ, ๋จธ์‹ ๋Ÿฌ๋‹๊ณผ ๋”ฅ๋Ÿฌ๋‹ โ—‡ ์ธ๊ณต์ง€๋Šฅ : '์ธ๊ฐ„์˜ ์ง€๋Šฅ์„ ๋ชจ๋ฐฉ' ํ•˜์—ฌ ์‚ฌ๋žŒ์ด ํ•˜๋Š” ์ผ์„ ๊ธฐ๊ณ„๊ฐ€ ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜๋Š” ๊ธฐ์ˆ  โ—‡ ์ธ๊ณต์ง€๋Šฅ > ๋จธ์‹ ๋Ÿฌ๋‹ > ๋”ฅ๋Ÿฌ๋‹ โˆ˜ ๋จธ์‹ ๋Ÿฌ๋‹ : ์ธ๊ณต์‹ ๊ฒฝ๋ง, ์„œํฌํŠธ ๋ฒกํ„ฐ ๋จธ์‹ , ๊ฒฐ์ • ํŠธ๋ฆฌ โˆ™โˆ™โˆ™ โˆ˜ ๋”ฅ๋Ÿฌ๋‹ : CNN, RNN, RBM โˆ™โˆ™โˆ™ โœ” https://koreapy.tistory.com/1223 : RBM ์„ค๋ช… ์ฐธ๊ณ  โ—‡ ๋จธ์‹ ๋Ÿฌ๋‹๊ณผ ๋”ฅ๋Ÿฌ๋‹์˜ ์ฐจ์ด โˆ˜ ๋จธ์‹ ๋Ÿฌ๋‹ : Input > ํŠน์„ฑ ์ถ”์ถœ (์ธ๊ฐ„์ด ์ฒ˜๋ฆฌ) > ๋ถ„๋ฅ˜ (์ปดํ“จํ„ฐ๊ฐ€ ์ฒ˜๋ฆฌ) > output โˆ˜ ๋”ฅ๋Ÿฌ๋‹ : Input > ํŠน์„ฑ ์ถ”์ถœ + ๋ถ„๋ฅ˜ (์ปดํ“จํ„ฐ๊ฐ€ ์ฒ˜๋ฆฌ) > output โˆ˜ ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•œ ํŠน์ง•์„ ์Šค์Šค๋กœ ์ฒ˜๋ฆฌํ•˜๋Š”์ง€์˜ ์—ฌ๋ถ€์— ๋”ฐ๋ผ ๋”ฅ๋Ÿฌ๋‹๊ณผ ๋จธ์‹ ๋Ÿฌ๋‹์ด ๊ตฌ๋ถ„๋œ๋‹ค. โœ” feature extrac.. 2022. 9. 22.
[Pytorch ๋”ฅ๋Ÿฌ๋‹ ์ž…๋ฌธ] ํŒŒ์ดํ† ์น˜ ๊ธฐ์ดˆ ๐Ÿ“Œ ๊ณต๋ถ€ ์ฐธ๊ณ  ์ž๋ฃŒ : https://wikidocs.net/book/2788 PyTorch๋กœ ์‹œ์ž‘ํ•˜๋Š” ๋”ฅ ๋Ÿฌ๋‹ ์ž…๋ฌธ ์ด ์ฑ…์€ ๋”ฅ ๋Ÿฌ๋‹ ํ”„๋ ˆ์ž„์›Œํฌ PyTorch๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๋”ฅ ๋Ÿฌ๋‹์— ์ž…๋ฌธํ•˜๋Š” ๊ฒƒ์„ ๋ชฉํ‘œ๋กœ ํ•ฉ๋‹ˆ๋‹ค. ์ด ์ฑ…์€ 2019๋…„์— ์ž‘์„ฑ๋œ ์ฑ…์œผ๋กœ ๋น„์˜๋ฆฌ์  ๋ชฉ์ ์œผ๋กœ ์ž‘์„ฑ๋˜์–ด ์ถœํŒ ... wikidocs.net ๐Ÿ“Œ ์ฝ”๋”ฉ ์‹ค์Šต https://colab.research.google.com/drive/11uzhksM-MYSf1_YcMzrOnEL6glhu1OiL?usp=sharing ํŒŒ์ดํ† ์น˜๋กœ ์‹œ์ž‘ํ•˜๋Š” ๋”ฅ๋Ÿฌ๋‹ ์ž…๋ฌธ.ipynb Colaboratory notebook colab.research.google.com โœ… ํŒŒ์ดํ† ์น˜ ๊ธฐ์ดˆ 1๏ธโƒฃ ํŒŒ์ดํ† ์น˜ ํŒจํ‚ค์ง€ ๊ธฐ๋ณธ ๊ตฌ์„ฑ โ—‡ torch : ๋„˜ํŒŒ์ด์™€ ์œ ์‚ฌํ•œ ๊ตฌ์กฐ๋ฅผ ๊ฐ€์ง€๋ฉฐ ๋‹ค์–‘.. 2022. 9. 14.
[์ธ๊ณต์ง€๋Šฅ] ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ ๊ฒฝ๋Ÿ‰ํ™” ๐Ÿ“Œ ๊ฒฝ๋Ÿ‰ํ™” : ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ ์‚ฌ์ด์ฆˆ๋ฅผ ์ค„์ด๊ธฐ ๋ชจ๋ธ ๊ฒฝ๋Ÿ‰ํ™”๋Š” ํ•˜๋“œ์›จ์–ด์™€ ์—ฐ๊ด€์ด ๋งŽ์ด ๋˜์–ด์žˆ์Œ ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์˜ ํฌ๊ธฐ๋Š” ๊ณ„์† ์ปค์ง€๊ณ  ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ํ•˜๋“œ์›จ์–ด์—์„œ ์ž˜ ๋™์ž‘์‹œํ‚ค๊ธฐ ์œ„ํ•ด์„œ ๊ด€๋ จ ์—ฐ๊ตฌ๊ฐ€ ํ•„์š”ํ•จ ๐Ÿ“Œ Ever Increasing Model Size ๋ชจ๋ธ ํฌ๊ธฐ๊ฐ€ ์ปค์ง€๋Š” ์ด์œ ๋Š” ์ •ํ™•๋„ ๋•Œ๋ฌธ → ๋ชจ๋ธ์˜ ํฌ๊ธฐ๊ฐ€ ์ปค์งˆ ์ˆ˜๋ก representation power ๊ฐ€ ์ฆ๊ฐ€ ๐Ÿ“Œ Downside ๋ชจ๋ธ ํฌ๊ธฐ๋ฅผ ๋Š˜๋ ค ์ •ํ™•๋„๋ฅผ ์ฆ๊ฐ€์‹œํ‚ค๋Š” ๊ฒƒ์€ 2๊ฐ€์ง€ ๋‹จ์ ์„ ๋ถˆ๋Ÿฌ์ผ์œผํ‚จ๋‹ค. ์—ฐ์‚ฐ๋Ÿ‰ ์ฆ๊ฐ€ ๋ฉ”๋ชจ๋ฆฌ ์ ์œ ์œจ ์ฆ๊ฐ€ : ๋ฉ”๋ชจ๋ฆฌ์— ๋ชจ๋ธ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์˜ฌ๋ ค์„œ ๊ตฌ๋™ (์ €์žฅ) → ๋ฉ”๋ชจ๋ฆฌ๊ฐ€ ์ž‘์€ ํœด๋Œ€ํฐ, ์ž„๋ฐ๋””๋“œ ์‹œ์Šคํ…œ์—์„œ๋Š” ๊ฑฐ๋Œ€ํ•œ AI ๋ฅผ ๋™์ž‘์‹œํ‚ค๊ธฐ ์–ด๋ ค์›€ ๋ฉ”๋ชจ๋ฆฌ bandwidth ์ฆ๊ฐ€ : ๋ฉ”๋ชจ๋ฆฌ๋กœ๋ถ€ํ„ฐ CPU ๋˜๋Š” GPU ๋กœ ๋ฐ์ดํ„ฐ๋ฅผ ์ „์†กํ•ด์•ผ ํ•˜๋Š”๋ฐ, ์ด๋•Œ.. 2022. 6. 21.
[์ธ๊ณต์ง€๋Šฅ] Federated Learning , Distributed Learning Summary โœจ Federated learning โ—พ Exploits huge amount of data across clients โ—พ data is non-IID โ—พ Brief indroduction of FedAvg โœจ Distributed learning โ—พ Make training Faster โ—พ Data evenly distributed โ—พ data parallel : Forward pass, Backward pass , Weight update ๐Ÿ‘‰ Communication : Allreduce - ring reduction, One-host reduction โ—พ Model parallel ๐Ÿ‘‰ inter-layer parallel (pipeline) : sub-minibatches, inter.. 2022. 6. 15.
[์ธ๊ณต์ง€๋Šฅ] Meta learning , Transfer learning Summary โœจ Meta learning โ—พ Few-shot learning โœจ Transfer learning : knowledge ๋ฅผ ์ „๋‹ฌ โ—พ Fine-Tuning → dataset ์ด ๋ถ€์กฑํ•œ ๊ฒฝ์šฐ โ—พ Knowledge distillation → ๋ชจ๋ธ ๊ฒฝ๋Ÿ‰ํ™”๋ฅผ ํ•˜๊ณ ์ž ํ•˜๋Š” ๊ฒฝ์šฐ โ—พ Domain adaptation → ๊ฐ™์€ ๋„๋ฉ”์ธ์— ์žˆ์ง€๋งŒ, ํ•™์ƒ ๋„๋ฉ”์ธ์˜ ๋ฐ์ดํ„ฐ์…‹์ด ๋ถ€์กฑํ•œ/๋ ˆ์ด๋ธ”์ด ์—†๋Š” ๊ฒฝ์šฐ โ—พ Inductive/unsupervised → ๋‹ค๋ฅธ task ๋ฅผ ์ˆ˜ํ–‰ํ•˜๊ธฐ ์œ„ํ•ด 1๏ธโƒฃ Meta learning โ‘  Meta learning ๊ธฐ๊ณ„๊ฐ€ ์•„๋Š”์ง€ ๋ชจ๋ฅด๋Š”์ง€ ๊ตฌ๋ถ„์ด ๊ฐ€๋Šฅํ•˜๋‹ค. ๐Ÿ”˜ learning to learn โ—พ ๋ฉ”ํƒ€ํ•™์Šต์€ ์—ฌ๋Ÿฌ๊ฐ€์ง€ task ์— ๋Œ€ํ•ด์„œ ์ผ๋ฐ˜ํ™”๋  ์ˆ˜ ์žˆ๋Š” ๋ชจ๋ธ์„ ํ•™์Šตํ•˜๋Š” ๊ฒƒ์„ ๋ชฉํ‘œ๋กœ ํ•œ๋‹ค .. 2022. 6. 14.
728x90