๋ณธ๋ฌธ ๋ฐ”๋กœ๊ฐ€๊ธฐ

1๏ธโƒฃ AI•DS/๐ŸฅŽ Casual inference47

์ธ๊ณผ์ถ”๋ก ์˜ ๋ฐ์ดํ„ฐ ๊ณผํ•™_2023 - week2. RCT ๐Ÿ“” ๊ฐ•์˜์ž๋ฃŒ ํ•„๊ธฐ๋ณธ โ‘  Potential Outcome Framework โ–ข Potential Outcome Framework • counterfactual : ํ•ด๋‹น treatment ๊ฐ€ ์—†์—ˆ๋‹ค๋ฉด ์–ด๋– ํ–ˆ์„๊นŒ • Causal effect = (Actual outcome for treated if treated) – (Potential outcome for treated if not treated) โ–ข Fundamental Problem of Causal Inference : Selection Bias • ํ˜„์‹ค์—์„œ๋Š” ์ž ์žฌ์  ๊ฒฐ๊ณผ๋ฅผ ๊ด€์ธกํ•  ์ˆ˜ ์—†๋‹ค. ํ•˜๋‚˜์˜ ๋Œ€์ƒ์— ๋Œ€ํ•ด์„œ๋Š” ์˜ค์ง ํ•˜๋‚˜์˜ ์ƒํƒœ๋งŒ ๊ด€์ฐฐํ•  ์ˆ˜ ์žˆ๋‹ค • ํ˜„์‹ค์—์„  Control group (treatment ๋ฅผ ๋ฐ›์ง€ ์•Š์€ ๊ทธ๋ฃน) ๋งŒ ๊ด€์ฐฐ ๊ฐ€๋Šฅํ•˜๋‹ค. • .. 2024. 1. 9.
์ธ๊ณผ์ถ”๋ก ์˜ ๋ฐ์ดํ„ฐ ๊ณผํ•™_2023 - week1. ๋น…๋ฐ์ดํ„ฐ, AI ์‹œ๋Œ€์—์„œ์˜ ์ธ๊ณผ์ถ”๋ก  ๐Ÿ“” ๊ฐ•์˜์ž๋ฃŒ ํ•„๊ธฐ๋ณธ โ‘  Credibility Revolution โ–ข Causal inference • observational data ๋กœ๋ถ€ํ„ฐ ํŠน์ •ํ•œ ํ˜„์ƒ์˜ ์ธ๊ณผ๊ด€๊ณ„๋ฅผ ๋ฐํ˜€๋‚ด๋Š” ๊ฒƒ • Econometrics : ๋ฐ์ดํ„ฐ ๋ถ„์„์„ ํ†ตํ•ด ๊ฒฝ์ œ ํ˜„์ƒ์„ ๋ถ„์„ํ•˜๊ณ  ์ด๋ก ์„ ํ…Œ์ŠคํŠธ ํ•˜๋Š” ๋ถ„์•ผ • ์ธ๊ณผ์ถ”๋ก ์€ ๋ชจํ˜•์„ ์–ด๋–ป๊ฒŒ ์ •์˜ํ•˜๋Š๋ƒ ๋ณด๋‹ค, ์ž˜ ์„ค๊ณ„๋œ Research design ์ด ๋” ์ค‘์š”ํ•˜๋‹ค. • Experimental approaches Example โˆ˜ RCT โˆ˜ Quasi-experiments - DiD, Instrumental variables, Fixed effects, RD, Matching, Synthetic control) โ‘ก Challenges in Causal inference โ–ข Correlation.. 2024. 1. 5.
two-way fixed effects model ๐Ÿ‘€ ์ธ๊ณผ์ถ”๋ก  ๊ฐœ์ธ ๊ณต๋ถ€์šฉ ํฌ์ŠคํŠธ ๊ธ€์ž…๋‹ˆ๋‹ค. ์ถœ์ฒ˜๋Š” ์ฒจ๋ถ€ํ•œ ๋งํฌ๋ฅผ ์ฐธ๊ณ ํ•ด์ฃผ์„ธ์š”! โ‘  Two-way fixed effects model โ—ฏ Staggered DiD • ์ด๋ฉ”์ผ ๋“ฑ๋ก์ด ๊ณ ๊ฐ ์ฐธ์—ฌ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ๋ถ„์„ํ•˜๋Š” Task โ‡จ ์ด๋ฉ”์ผ ๋“ฑ๋ก์€ ์œ ์ €๋งˆ๋‹ค ๋‹ค๋ฅธ ์‹œ์ ์—์„œ ์‹œ์ž‘ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ์ ์ง„์ ์ธ ์ด์ค‘์ฐจ๋ถ„๋ฒ• (Staggered DiD) ๋ฅผ ์ ์šฉํ•  ์ˆ˜ ์žˆ๋‹ค. โ—ฏ DiD ์— ๋Œ€ํ•œ ๊ฐ„๋‹จํ•œ ์„ค๋ช… • ์šฐ๋ฆฌ๊ฐ€ ๊ถ๊ธˆํ•œ ์ •์ฑ…์˜ ํšจ๊ณผ๋ฅผ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•ด์„œ ์ •์ฑ…์ด ๋„์ž…๋œ ํŠน์ • ๊ทธ๋ฃน๊ณผ ๊ทธ๋ ‡์ง€ ์•Š์€ ๊ทธ๋ฃน์˜ ์ •์ฑ… ๋„์ž… ์ „ํ›„๋ฅผ ๋น„๊ตํ•˜๋Š” ๊ธฐ๋ฒ• • ์˜ˆ๋ฅผ๋“ค์–ด ๋ชจ๋ฐ”์ผ ์•ฑ์—์„œ ์—…๋ฐ์ดํŠธ๋ฅผ ํ•˜๋Š”๋ฐ ๊ทธ ํšจ๊ณผ๋ฅผ ์ธก์ •ํ•˜๊ธฐ ์œ„ํ•ด, ์•ˆ๋“œ๋กœ์ด๋“œ ์•ฑ์—์„œ๋Š” ๊ฐœํŽธ์„ ์‹œ์ž‘ํ•˜๊ณ  iOS ์•ฑ์—์„œ๋Š” ๊ธฐ์กด์˜ ์ •์ฑ…์„ ์œ ์ง€ํ•˜๋ฉด์„œ ๊ทธ ์ฐจ์ด๊ฐ€ ์–ด๋–ป๊ฒŒ ๋ณ€ํ•˜๋Š”์ง€ ๊ตฌํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด๋•Œ ๋‘ ์•ฑ.. 2023. 8. 14.
[The Brave and True] 14. Panel data and fixed effects ๐Ÿ‘€ ์ธ๊ณผ์ถ”๋ก  ๊ฐœ์ธ ๊ณต๋ถ€์šฉ ํฌ์ŠคํŠธ ๊ธ€์ž…๋‹ˆ๋‹ค. ์ถœ์ฒ˜๋Š” ์ฒจ๋ถ€ํ•œ ๋งํฌ๋ฅผ ์ฐธ๊ณ ํ•ด์ฃผ์„ธ์š”! ๐Ÿ“œ ์ •๋ฆฌ • ํŒจ๋„ ๋ฐ์ดํ„ฐ : ์—ฌ๋Ÿฌ ๊ธฐ๊ฐ„์— ๊ฑธ์ณ ๋™์ผํ•œ ๋Œ€์ƒ์— ๋Œ€ํ•ด ์ธก์ •๊ฐ’์ด ์žˆ๋Š” ๋ฐ์ดํ„ฐ • Entity (๊ฐœ์ฒด) ๋ฅผ ์ œ์–ดํ•˜๋Š” ๊ณ ์ •ํšจ๊ณผ ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•ด ๋ชจ๋“  ๋Œ€์ƒ๊ณผ, ์‹œ๊ฐ„์ด ๋ณ€ํ•˜์ง€ ์•Š๋Š” ๋ณ€์ˆ˜๋ฅผ ๊ณ ์ •ํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ณ ์ •ํšจ๊ณผ ๋ชจ๋ธ์€ ๊ต๋ž€๋ณ€์ˆ˜๋ฅผ ํ†ต์ œํ•˜๋Š” ๊ฐ•๋ ฅํ•˜๊ณ  ์„ค๋“๋ ฅ์žˆ๋Š” ๋ฐฉ๋ฒ•์ด๋‹ค. • ๊ทธ๋Ÿฌ๋‚˜ ์—ญ์ธ๊ณผ๊ด€๊ณ„๊ฐ€ ์žˆ๊ฑฐ๋‚˜ ๊ด€์ธก๋˜์ง€ ์•Š์€ ๊ต๋ž€๋ณ€์ˆ˜๊ฐ€ ์‹œ๊ฐ„์— ๋”ฐ๋ผ ๋ณ€ํ•  ๋•Œ ๊ณ ์ •ํšจ๊ณผ ๋ชจ๋ธ์ด ์ธ๊ณผํšจ๊ณผ๋ฅผ ๋„์ถœํ•˜๊ธฐ ์–ด๋ ค์šธ ์ˆ˜ ์žˆ๋‹ค. โ‘  Intro โ—ฏ Panel data • Panel : ์—ฌ๋Ÿฌ๊ธฐ๊ฐ„์— ๊ฑธ์ณ ๋™์ผํ•œ ๋‹จ์œ„ (unit) ์„ ๋ฐ˜๋ณต์ ์œผ๋กœ ๊ด€์ฐฐํ•œ ๊ฒฝ์šฐ • ํŒจ๋„ ๋ฐ์ดํ„ฐ๋Š” ์—ฌ๋Ÿฌ ํ•ด์— ๊ฑธ์ณ ์—ฌ๋Ÿฌ ๋„์‹œ ๋˜๋Š” ์ฃผ์— ๋Œ€ํ•œ ๋ฐ์ดํ„ฐ๋ฅผ ์ถ”์ ํ•  ์ˆ˜ ์žˆ๋Š” ์ •๋ถ€ ์ •์ฑ… ํ‰๊ฐ€์—์„œ .. 2023. 7. 26.
[The Brave and True] 13. Difference-in-Differences ๐Ÿ‘€ ์ธ๊ณผ์ถ”๋ก  ๊ฐœ์ธ ๊ณต๋ถ€์šฉ ํฌ์ŠคํŠธ ๊ธ€์ž…๋‹ˆ๋‹ค. ์ถœ์ฒ˜๋Š” ์ฒจ๋ถ€ํ•œ ๋งํฌ๋ฅผ ์ฐธ๊ณ ํ•ด์ฃผ์„ธ์š”! https://ysyblog.tistory.com/307 ๐Ÿ“œ ์ •๋ฆฌ • DID ํ™œ์šฉ ๋ชฉ์  ๋ฐ ์˜ˆ์ œ • DID estimator ์ถ”์ • • Parallel trend ๊ฐ€์ • • ์ง‘๊ณ„๋œ ๋ฐ์ดํ„ฐ์—์„œ์˜ DID estimator โ‘  DiD ๊ฐ€ ํ•„์š”ํ•œ ์ด์œ  โ—ฏ DiD ๊ฐ€ ํ•„์š”ํ•œ ์ƒํ™ฉ • ์˜จ๋ผ์ธ ๋งˆ์ผ€ํŒ…์„ ์‚ฌ์šฉํ•˜๋ฉด ์–ด๋–ค ๊ณ ๊ฐ์ด ์–ด๋–ค ๊ด‘๊ณ ๋ฅผ ๋ณด์•˜๋Š”์ง€ ์•Œ ์ˆ˜ ์žˆ๊ณ , ์ฟ ํ‚ค๋ฅผ ์‚ฌ์šฉํ•ด ๊ณ ๊ฐ์ด ๋ฐฉ๋ฌธ ํŽ˜์ด์ง€์— ๋„๋‹ฌํ–ˆ๋Š”์ง€ ๋˜๋Š” ๋‹ค์šด๋กœ๋“œ ๋ฒ„ํŠผ์„ ํด๋ฆญํ–ˆ๋Š”์ง€ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ ๋จธ์‹ ๋Ÿฌ๋‹์„ ์ด์šฉํ•ด ๊ณ ๊ฐ๊ณผ ๋งค์šฐ ์œ ์‚ฌํ•œ ์ž ์žฌ ๊ณ ๊ฐ์„ ์ฐพ๊ณ  ํ•ด๋‹น ๊ณ ๊ฐ์—๊ฒŒ๋งŒ ๊ด‘๊ณ ๋ฅผ ๋…ธ์ถœ์‹œํ‚ฌ ์ˆ˜ ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ์˜๋ฏธ์—์„œ ์˜จ๋ผ์ธ ๋งˆ์ผ€ํŒ…์€ ๋งค์šฐ ์ •ํ™•ํ•˜๋‹ค. • ๋ฐ˜๋ฉด, ๊ด‘๊ณ ํŒ๊ณผ TV ๊ด‘๊ณ  ๊ฐ™์€ ๊ฒฝ์šฐ.. 2023. 7. 20.
[The Brave and True] 12. Doubly Robust Estimation ๐Ÿ‘€ ์ธ๊ณผ์ถ”๋ก  ๊ฐœ์ธ ๊ณต๋ถ€์šฉ ํฌ์ŠคํŠธ ๊ธ€์ž…๋‹ˆ๋‹ค. ์ถœ์ฒ˜๋Š” ์ฒจ๋ถ€ํ•œ ๋งํฌ๋ฅผ ์ฐธ๊ณ ํ•ด์ฃผ์„ธ์š”! ๐Ÿ“œ ์ •๋ฆฌ • Doubly robust estimator = ์„ ํ˜•ํšŒ๊ท€ + ๊ฒฝํ–ฅ์ ์ˆ˜ • ๋‘˜ ์ค‘ ํ•˜๋‚˜๊ฐ€ ๋ถˆ์™„์ „ํ•ด๋„ ์ ๋‹นํ•œ ์ถ”์ •์น˜๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ๋‹ค. โ‘  Introduction โ—ฏ Doubly Robust Estimation • E[Y|T=1] - E[Y|T=0] | X ๋ฅผ ์ถ”์ •ํ•˜๊ธฐ ์œ„ํ•ด ์„ ํ˜•ํšŒ๊ท€, Propensity score weighting ๋ฐฉ๋ฒ•์„ ๋ฐฐ์› ๋‹ค. • ์ด ๋‘˜์„ ๊ฒฐํ•ฉํ•ด์„œ ์‚ฌ์šฉํ•˜๋Š” ๋ฐฉ๋ฒ•์ด Doubly Robust Estimation ์ด๋‹ค. โ—ฏ ์˜ˆ์ œ • chapter 11 ์˜ˆ์ œ์™€ ๋™์ผ • ๋ถ„์„ํ•˜๊ธฐ ์ „์— ๋ฒ”์ฃผํ˜• ๋ณ€์ˆ˜๋“ค์„ dummy ์ฒ˜๋ฆฌํ•œ๋‹ค. categ = ["ethnicity", "gender", "school_urbanicit.. 2023. 7. 14.
[The Brave and True] 11. Propensity score ๐Ÿ‘€ ์ธ๊ณผ์ถ”๋ก  ๊ฐœ์ธ ๊ณต๋ถ€์šฉ ํฌ์ŠคํŠธ ๊ธ€์ž…๋‹ˆ๋‹ค. ์ถœ์ฒ˜๋Š” ์ฒจ๋ถ€ํ•œ ๋งํฌ๋ฅผ ์ฐธ๊ณ ํ•ด์ฃผ์„ธ์š”! โ€ป ์ •๋ฆฌ 1 โ€ป ์ •๋ฆฌ 2 ๐Ÿ“œ ์ •๋ฆฌ • ์„ฑํ–ฅ์ ์ˆ˜ = Treatment ๋ฅผ ๋ฐ›์„ ํ™•๋ฅ  • ์„ฑํ–ฅ์ ์ˆ˜๊ฐ€ ์žˆ๋‹ค๋ฉด Confounder ๋ฅผ ์ง์ ‘ ์ œ์–ดํ•  ํ•„์š”๊ฐ€ ์—†์œผ๋ฉฐ, ์„ฑํ–ฅ์ ์ˆ˜๋ฅผ ํ†ต์ œํ•˜๋Š” ๊ฒƒ๋งŒ์œผ๋กœ ์ถฉ๋ถ„ํ•˜๋‹ค. โ‘  Example โ—ฏ ์ฃผ์ œ • ํ•™์ƒ๋“ค์ด ํ•™๊ต์—์„œ ์„ฑ์žฅ ๋งˆ์ธ๋“œ์…‹์— ๋Œ€ํ•œ ์„ธ๋ฏธ๋‚˜๋ฅผ ์ฐธ์—ฌํ•˜๊ณ  ๊ต์œก์„ ๋ฐ›์€ ํ•™์ƒ๋“ค์ด ํ•™์—…์ ์œผ๋กœ ์–ด๋– ํ•œ ์„ฑ์ทจ๊ฐ€ ์žˆ์—ˆ๋Š”์ง€ ์ธก์ •ํ•˜๊ธฐ ์œ„ํ•ด ์„ธ๋ฏธ๋‚˜ ์ˆ˜์—…์„ ๋ฐ›์€ ํ•™์ƒ๋“ค์˜ ๋Œ€ํ•™์ƒํ™œ์„ ์ถ”์ ํ•œ๋‹ค. โ—ฏ ๋ฐ์ดํ„ฐ์…‹ • school_achievement : ํ‘œ์ค€ํ™”๋œ ์„ฑ์ทจ๋„ (ํ‘œ์ค€ํ™” ๋จ = ๋ณ€์ˆ˜๊ฐ€ ํ‘œ์ค€ํŽธ์ฐจ๋กœ ์ธก์ •๋จ) • success_expect : ์ž๊ธฐ๊ฐœ๋ฐœ ์„ฑ๊ณต ๊ธฐ๋Œ€๋„ (๋ฏธ๋ž˜ ์„ฑ๊ณต์— ๋Œ€ํ•œ ์ž์ฒด ๊ธฐ๋Œ€ ํ‰๊ฐ€) → ๋ฌด์ž‘์œ„ ํ• ๋‹น ์ด์ „์— ์ธก.. 2023. 7. 13.
[The Brave and True] 10. Matching ๐Ÿ‘€ ์ธ๊ณผ์ถ”๋ก  ๊ฐœ์ธ ๊ณต๋ถ€์šฉ ํฌ์ŠคํŠธ ๊ธ€์ž…๋‹ˆ๋‹ค. ์ถœ์ฒ˜๋Š” ์ฒจ๋ถ€ํ•œ ๋งํฌ๋ฅผ ์ฐธ๊ณ ํ•ด์ฃผ์„ธ์š”! โ€ป ์ •๋ฆฌ ๐Ÿ“œ ์ •๋ฆฌ • ํšŒ๊ท€ : ๋ฐ์ดํ„ฐ๋ฅผ ์…€๋กœ ๋ถ„ํ• ํ•˜๊ณ , ๊ฐ ์…€์—์„œ ATE ๋ฅผ ๊ณ„์‚ฐํ•œ ๋‹ค์Œ, ์…€์˜ ATE ๋ฅผ ์ „์ฒด ๋ฐ์ดํ„ฐ์…‹์— ๋Œ€ํ•œ ๋‹จ์ผ ATE ๋กœ ๊ฒฐํ•ฉํ•˜๋Š” ๊ฒƒ • ๋งค์นญ estimator โ‘  What is Regression Doing After All? โ—ฏ ํšŒ๊ท€๋ถ„์„ • ํšŒ๊ท€๋ถ„์„์„ ์ ์šฉํ•˜๋ฉด Treatment group ๊ณผ Control group ์„ ๋น„๊ตํ•  ๋•Œ, ์ถ”๊ฐ€์ ์ธ ๋ณ€์ˆ˜๋“ค์„ ์ œ์–ดํ•  ์ˆ˜ ์žˆ๋‹ค. ์ฆ‰, X๋ฅผ ํ†ต์ œํ•จ์œผ๋กœ์จ ATE ๋ฅผ ์‹๋ณ„ํ•  ์ˆ˜ ์žˆ๋‹ค : (Y0, Y1) ⊥ T | X โ‡จ ์กฐ๊ฑด๋ถ€ ๋…๋ฆฝ์„ฑ ๊ฐ€์ • • ํšŒ๊ท€๋ถ„์„๊ณผ Matching ์€ functional form ์„ ๊ฐ€์ •ํ•˜๋Š๋ƒ ์•ˆ ํ•˜๋Š๋ƒ์˜ ์ฐจ์ด๋งŒ ์กด์žฌํ•œ๋‹ค. โ‘ก The Subcla.. 2023. 7. 11.
[The Brave and True] 9. Non Compliance and LATE ๐Ÿ‘€ ์ธ๊ณผ์ถ”๋ก  ๊ฐœ์ธ ๊ณต๋ถ€์šฉ ํฌ์ŠคํŠธ ๊ธ€์ž…๋‹ˆ๋‹ค. ์ถœ์ฒ˜๋Š” ์ฒจ๋ถ€ํ•œ ๋งํฌ๋ฅผ ์ฐธ๊ณ ํ•ด์ฃผ์„ธ์š”! ๐Ÿ“œ ์ •๋ฆฌ ๋„๊ตฌ๋ณ€์ˆ˜๋กœ ์ถ”์ •ํ•˜๋Š” ATE ๋Š” LATE ์ด๋‹ค. • compiler์— ๋Œ€ํ•œ LATE ์ด๋‹ค. โ‘  Heterogeneous โ—ฏ ๋„๊ตฌ๋ณ€์ˆ˜์— ๋Œ€ํ•œ ๋ฐ˜์‘ ์ข…๋ฅ˜ • Compliers, Never Takers, Always Takers, Defieres • ex. ์‹ ์•ฝ ํšจ๊ณผ ํ…Œ์ŠคํŠธ๋ฅผ ์œ„ํ•ด ํ”ผ์‹คํ—˜์ž๋Š” ์•ฝ๋ฌผ ๋˜๋Š” ์œ„์•ฝ์„ ํ• ๋‹น๋ฐ›๋Š”๋‹ค. Compliers ์•ฝ๋ฌผ ๋˜๋Š” ์œ„์•ฝ์„ ๊ฑฐ๋ถ€๊ฐ ์—†์ด ๋ณต์šฉํ•˜๋Š” ์ง‘๋‹จ Never Takers ํ• ๋‹น ๋ฐ›์€ ์•ฝ์˜ ๋ณต์šฉ(Treatment)์„ ๊ฑฐ๋ถ€ ๋˜๋Š” ๋ฐ›์ง€ ์•Š๋Š” ์‚ฌ๋žŒ (์–ด๋– ํ•œ ์•ฝ์„ ํ• ๋‹น๋ฐ›์•„๋„ ๋ณต์šฉํ•˜์ง€ ์•Š์„ ์‚ฌ๋žŒ) Always Takers ์•ฝ ํ• ๋‹น๊ณผ ๋ณ„๊ฐœ๋กœ ํ•ญ์ƒ ์ง„์งœ ์•ฝ๋ฌผ์„ ๋ณต์šฉํ•˜๋Š” ์‚ฌ๋žŒ๋“ค Defieres ํ†ต์ œ์— ํ• ๋‹น๋˜.. 2023. 7. 4.
[The Brave and True] 8. Instrumental variables ๐Ÿ‘€ ์ธ๊ณผ์ถ”๋ก  ๊ฐœ์ธ ๊ณต๋ถ€์šฉ ํฌ์ŠคํŠธ ๊ธ€์ž…๋‹ˆ๋‹ค. ์ถœ์ฒ˜๋Š” ์ฒจ๋ถ€ํ•œ ๋งํฌ๋ฅผ ์ฐธ๊ณ ํ•ด์ฃผ์„ธ์š”! ๐Ÿ“œ ์ •๋ฆฌ ๋„๊ตฌ๋ณ€์ˆ˜ • Treatment ๋ณ€์ˆ˜์™€ ์ƒ๊ด€๊ด€๊ณ„๊ฐ€ ์žˆ์œผ๋ฉด์„œ, Treatment ๋ฅผ ํ†ตํ•ด์„œ๋งŒ ๊ฒฐ๊ณผ๋ณ€์ˆ˜์— ์˜ํ–ฅ์„ ์ฃผ๋Š” ๊ฒƒ • 2SLS ๋ฅผ ์‚ฌ์šฉํ•ด ์ธ๊ณผํšจ๊ณผ๋ฅผ ์ถ”์ • • ์•ฝํ•œ ๋„๊ตฌ๋ณ€์ˆ˜๋ผ๋ฉด ์ถ”์ •์ด ์–ด๋ ค์šธ ์ˆ˜ ์žˆ๋‹ค. • 2SLS ๋Š” ์ผ๊ด€์„ฑ์ด ์žˆ๊ธด ํ•˜์ง€๋งŒ, ์—ฌ์ „ํžˆ ์ธ๊ณผํšจ๊ณผ๋ฅผ ์ถ”์ •ํ•˜๋Š”๋ฐ ์žˆ์–ด์„  ํŽธํ–ฅ๋œ ๋ฐฉ๋ฒ•์ด๋‹ค. โ‘  Going Around Omitted variable bias โ—ฏ Instrumental variables • OVB(Omitted Variable Bias) ๋ฅผ ๋‹ค๋ฃจ๋Š” ๋ฐฉ๋ฒ• ์ค‘ ํ•˜๋‚˜๋Š” ์ƒ๋žต๋œ ๋ณ€์ˆ˜๋ฅผ ๋ชจ๋ธ์— ์ถ”๊ฐ€ํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ƒ๋žต๋œ ๋ณ€์ˆ˜๋ฅผ ํ•ญ์ƒ ์–ป์„ ์ˆ˜ ์žˆ๋Š” ๊ฒƒ์€ ์•„๋‹ˆ๊ธฐ ๋•Œ๋ฌธ์— ๋ฌธ์ œ๊ฐ€ ๋œ๋‹ค. • ๋„๊ตฌ๋ณ€์ˆ˜์˜ ์•„์ด๋””์–ด๋Š” .. 2023. 7. 3.
728x90