๋ณธ๋ฌธ ๋ฐ”๋กœ๊ฐ€๊ธฐ
1๏ธโƒฃ AI•DS/๐ŸฅŽ Casual inference

์ธ๊ณผ์ถ”๋ก ์˜ ๋ฐ์ดํ„ฐ ๊ณผํ•™_2023 - week1. ๋น…๋ฐ์ดํ„ฐ, AI ์‹œ๋Œ€์—์„œ์˜ ์ธ๊ณผ์ถ”๋ก 

by isdawell 2024. 1. 5.
728x90

 

 

๐Ÿ“”  ๊ฐ•์˜์ž๋ฃŒ ํ•„๊ธฐ๋ณธ 

 

Week 1. Lecture Note.pdf
6.23MB

 

 

 

 

 

 

 

 

โ‘   Credibility Revolution


 

 

โ–ข  Causal inference 

 

•   observational data ๋กœ๋ถ€ํ„ฐ ํŠน์ •ํ•œ ํ˜„์ƒ์˜ ์ธ๊ณผ๊ด€๊ณ„๋ฅผ ๋ฐํ˜€๋‚ด๋Š” ๊ฒƒ 

•   Econometrics : ๋ฐ์ดํ„ฐ ๋ถ„์„์„ ํ†ตํ•ด ๊ฒฝ์ œ ํ˜„์ƒ์„ ๋ถ„์„ํ•˜๊ณ  ์ด๋ก ์„ ํ…Œ์ŠคํŠธ ํ•˜๋Š” ๋ถ„์•ผ 

•  ์ธ๊ณผ์ถ”๋ก ์€ ๋ชจํ˜•์„ ์–ด๋–ป๊ฒŒ ์ •์˜ํ•˜๋Š๋ƒ ๋ณด๋‹ค, ์ž˜ ์„ค๊ณ„๋œ Research design ์ด ๋” ์ค‘์š”ํ•˜๋‹ค. 

•   Experimental approaches Example

    โˆ˜  RCT

    โˆ˜  Quasi-experiments - DiD, Instrumental variables, Fixed effects, RD, Matching, Synthetic control) 

 

 

 

 

 

โ‘ก Challenges in Causal inference 


 

โ–ข  Correlation and Causation 

 

•   Correlation : ๋ฐ์ดํ„ฐ๊ฐ€ ํ•จ๊ป˜ ๋ณ€ํ™”ํ•˜๋Š” ํŒจํ„ด (Co-movement in a direction) 

•   Causation : Cause and effect

•   ์ƒ๊ด€์„ฑ๊ณผ ์ธ๊ณผ์„ฑ์„ ๊ตฌ๋ถ„ํ•˜๋Š” ๊ฒƒ์€ ๋งค์šฐ ์–ด๋ ค์šด ์ผ์ด๋‹ค

    โˆ˜  ex1. Minimum Wage and Employment

    โˆ˜  ex2. Recommendation System

    โˆ˜  ex3. Companion Animals and Depression

    โˆ˜  ex4. Treatment Effectiveness

    โˆ˜  ex5. Effectiveness of Paid Search Ads

    โˆ˜  ex6. Diversification and Firm Value

 

 

 

 

 

 

 

โ‘ข  ๋น…๋ฐ์ดํ„ฐ์™€ AI ๊ฐ€ ์ธ๊ณผ์ถ”๋ก ์„ ์œ„ํ•œ ํ•ด๊ฒฐ์ฑ…์ด ๋ ๊นŒ


 

โ–ข  ML/AI and Causal Inference

 

 

 

 

 

โ–ข  Statistics and Causal Inference

 

•  ํ†ต๊ณ„๋Š” ๋ฐ์ดํ„ฐ๋ฅผ ํ†ตํ•ด ํ†ต๊ณ„ ๋ชจํ˜•์„ ์ถ”์ •ํ•˜๋Š” ๊ฒƒ์ด ์ฃผ๋œ ๊ด€์‹ฌ์‚ฌ์˜€๋‹ค๋ฉด, ์ธ๊ณผ์ถ”๋ก ์€ ๊ด€์‹ฌ์žˆ๋Š” ์ธ๊ณผ์ ์ธ ํšจ๊ณผ๋ฅผ ๋ช…ํ™•ํžˆ ์ •์˜ํ•˜๊ณ , ๊ทธ๋Ÿฌํ•œ ํšจ๊ณผ๊ฐ€ ์ถ”์ • ๊ฐ€๋Šฅํ•œ์ง€, ๊ฐ€๋Šฅํ•˜๋‹ค๋ฉด ์–ด๋– ํ•œ ์กฐ๊ฑด๊ณผ ์–ด๋– ํ•œ ๊ฐ€์ •์ด ํ•„์š”ํ•œ์ง€ ๋ช…ํ™•ํ™” ํ•˜๋Š” ๊ฒƒ  ๐Ÿ‘‰  ์ธ๊ณผ์ถ”๋ก ์€ Design-based approach 

 

 

 

 

 

 

 

โ‘ฃ ์–ธ์ œ ์ธ๊ณผ์ถ”๋ก ์ด ํ•„์š”ํ•œ๊ฐ€ 


 

 

โ–ข  No causation without manipulation

 

•  ์ธ๊ณผ์„ฑ์€ ๋””์ž์ธ๋˜๊ณ  ์กฐ์ž‘๋  ์ˆ˜ ์žˆ๋Š” treatment ์— ๋Œ€ํ•ด์„œ๋งŒ ์ •์˜๋  ์ˆ˜ ์žˆ๋‹ค. 

 

 

 

 

 

โ–ข  Goal-Oriented Framework of Data Science

 

•  input ์— ๋Œ€ํ•œ intervention ๊ณผ manipulation ์„ ํ•จ์œผ๋กœ์จ output ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ณ ์ž ํ•œ๋‹ค๋ฉด ๐Ÿ‘‰ ์ธ๊ณผ์ถ”๋ก  

•  output ์„ ์ •ํ™•ํžˆ ์˜ˆ์ธกํ•˜๋Š” ๊ฑด ๐Ÿ‘‰ ๋จธ์‹ ๋Ÿฌ๋‹ 

 

 

 

 

•  Example. ์†Œ์…œ ๋ฏธ๋””์–ด ์ƒ์—์„œ์˜ ์ž…์†Œ๋ฌธ ํšจ๊ณผ 

 

 

 

โ†ช  ํŠน์ • ์ด์šฉ์ž์— ๋Œ€ํ•œ intervention (ex. ์ธํ”Œ๋ฃจ์–ธ์„œ ๋งˆ์ผ€ํŒ…) ์„ ๊ฐ€ํ•˜์—ฌ ์†Œ์…œ๋„คํŠธ์›Œํฌ ์ƒ์—์„œ์˜ ์œ ์ €๋“ค์—๊ฒŒ ์ œํ’ˆ ๊ตฌ๋งค๋ฅผ ์œ ๋„ํ•˜๋Š” ๊ฒƒ์ด ๋ชฉ์ ์ด๋ฉด ์ธ๊ณผ์ถ”๋ก ์ด ํ•„์š”ํ•œ ๋ฌธ์ œ - input ์— ๋Œ€ํ•œ intervention

 

โ†ช  ์ธ๊ณผํšจ๊ณผ๊ฐ€ ์—†๋‹ค๊ณ  ํ•˜๋”๋ผ๋„, ์„œ๋กœ ํŒ”๋กœ์ž‰ ํ•˜๊ณ  ์žˆ๋‹ค๋Š” ์‚ฌ์‹ค ์ž์ฒด๋งŒ์œผ๋กœ๋„ ์ข‹์€ ์˜ˆ์ธก์„ ํ•  ์ˆ˜ ์žˆ์Œ (์›์ธ์ด ์•„๋‹ ์ˆ˜ ์žˆ์ง€๋งŒ, ์‚ฌ์‹ค ๋งŒ์œผ๋กœ๋„ ๊ฐ€์ •์ด ์–ด๋Š ์ •๋„ ์˜ˆ์ƒ๋˜๊ธฐ ๋•Œ๋ฌธ์— ์˜ˆ์ธก์„ ์ง„ํ–‰ํ•  ์ˆ˜ ์žˆ์Œ)

 

 

 

 

โ–ข  Intervention ์— ์˜ํ•œ Manipulation ์ „๋žต ์ œ์‹œ๊ฐ€ ํ•„์š”ํ•˜๋‹ค๋ฉด ์ธ๊ณผ์ถ”๋ก ! 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

728x90

๋Œ“๊ธ€