๋ณธ๋ฌธ ๋ฐ”๋กœ๊ฐ€๊ธฐ

1๏ธโƒฃ AI•DS/๐Ÿ“˜ GNN8

[cs224w] Frequent Subgraph Mining with GNNs 1๏ธโƒฃ 12๊ฐ• ๋ณต์Šต ๐Ÿ”น Main Topic : Subgraph Mining - Identifying and Counting Motfits in Networks • Subgraph ์™€ motifs ๋Š” ๊ทธ๋ž˜ํ”„ ๊ตฌ์กฐ์— ๋Œ€ํ•œ ์ธ์‚ฌ์ดํŠธ๋ฅผ ์–ป๊ฒŒ ํ•ด์ฃผ๋Š” ์š”์†Œ์ด๋‹ค. • ํŠน์ • ๊ทธ๋ž˜ํ”„๋“ค ์‚ฌ์ด์—์„œ Subgraph Isomorphism ๊ด€๊ณ„์— ์žˆ๋Š”์ง€ ์˜ˆ์ธกํ•˜๋Š” Task ์— ๋Œ€ํ•ด ์‹ ๊ฒฝ๋ง์„ ํ™œ์šฉํ•œ๋‹ค. • Subgraph ๊ด€๊ณ„๋ฅผ ํŒ๋ณ„ํ•˜๋Š” ๋ฐฉ๋ฒ• : Order embedding ๐Ÿ”น Subgraph and Motifs • Building Blocks of Networks → Subgraph (=Mofits) ๋Š” ๋„คํŠธ์›Œํฌ์˜ function ์ด๋‚˜ behavior ๊ณผ ๊ฐ™์€ ์š”์†Œ๋ฅผ ๊ฒฐ์ •ํ•œ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ๊ทธ๋ž˜ํ”„๊ฐ€ ์–ด๋–ป๊ฒŒ ์ž‘๋™ํ•˜๋Š”์ง€ ์•Œ ์ˆ˜ ์žˆ๊ณ , .. 2023. 1. 27.
[cs224w] Theory of Graph Neural Networks 1๏ธโƒฃ 9๊ฐ• ๋ณต์Šต ๐Ÿ”น Main Topic : GNN ์˜ ํ‘œํ˜„๋Šฅ๋ ฅ๊ณผ ๋ฒ”์œ„ • Expressive power : ์–ด๋–ป๊ฒŒ ์„œ๋กœ๋‹ค๋ฅธ ๊ทธ๋ž˜ํ”„ ๊ตฌ์กฐ๋ฅผ ๊ตฌ๋ณ„ํ•˜๋Š”๊ฐ€ (node ์™€ graph structure ๋ฅผ ์–ด๋–ป๊ฒŒ ๊ตฌ๋ถ„ํ•˜๋Š”๊ฐ€) • Maximally expressive GNN model : ํ‘œํ˜„๋ ฅ์„ ์–ด๋””์„œ ๊ทน๋Œ€ํ™” ์‹œํ‚ฌ ์ˆ˜ ์žˆ์„๊นŒ ๐Ÿ”น GNN model โ‘  GCN : mean pool โ‘ก GraphSAGE : max pool • Local Neighborhood Structure : ๋ชจ๋“  ๋…ธ๋“œ๊ฐ€ ๊ฐ™์€ feature ๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ๋Š” ๊ทธ๋ž˜ํ”„์—์„œ ์„œ๋กœ๋‹ค๋ฅธ ๋…ธ๋“œ๋ฅผ ๊ตฌ๋ณ„ํ•˜๋Š” ๋ฐฉ๋ฒ• (same color - same feature ๋กœ ๊ฐ„์ฃผ) โ†ช ๊ธฐ์ค€1 : different node degree โ†ช ๊ธฐ์ค€2 : different nei.. 2023. 1. 6.
[CS224W] Graph Neural Network 1๏ธโƒฃ 6๊ฐ• ๋ณต์Šต ๐Ÿ”น Main Topic : Graph Neural Networks โ‘  ๋ณต์Šต : Node embedding • ๊ทธ๋ž˜ํ”„์—์„œ ์œ ์‚ฌํ•œ ๋…ธ๋“œ๋“ค์ด ํ•จ์ˆ˜ f ๋ฅผ ๊ฑฐ์ณ d ์ฐจ์›์œผ๋กœ ์ž„๋ฒ ๋”ฉ ๋˜์—ˆ์„ ๋•Œ, ์ž„๋ฒ ๋”ฉ ๊ณต๊ฐ„ ๋‚ด์—์„œ ๊ฐ€๊นŒ์ด ์œ„์น˜ํ•˜๋„๋ก ๋งŒ๋“œ๋Š” ๊ฒƒ โ†ช Encoder : ๊ฐ ๋…ธ๋“œ๋ฅผ ์ €์ฐจ์› ๋ฒกํ„ฐ๋กœ ๋งคํ•‘ โ†ช Similarity function : ์›๋ž˜ ๊ทธ๋ž˜ํ”„ ๋‚ด์—์„œ์˜ ๋…ธ๋“œ ๊ฐ„ ์œ ์‚ฌ๋„์™€ ์ž„๋ฒ ๋”ฉ ๊ณต๊ฐ„์—์„œ ๋…ธ๋“œ ๋ฒกํ„ฐ์˜ ๋‚ด์ ๊ฐ’์ด ์œ ์‚ฌํ•˜๋„๋ก ๋งŒ๋“œ๋Š” ํ•จ์ˆ˜ • Shallow Encoding (embedding lookup) : ์ž„๋ฒ ๋”ฉ ํ–‰๋ ฌ์—์„œ ๋…ธ๋“œ์˜ ์ž„๋ฒ ๋”ฉ ๋ฒกํ„ฐ๋ฅผ ๊ฐ ์นผ๋Ÿผ์— ๋‹ด์•„, ๋‹จ์ˆœํžˆ ๋ฒกํ„ฐ๋ฅผ ์ฝ์–ด์˜ค๋Š” ๋ฐฉ์‹ → ๐Ÿคจ ๋…ธ๋“œ ๊ฐ„์— ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ๊ณต์œ ํ•˜์ง€ ์•Š๊ธฐ ๋•Œ๋ฌธ์— ๋…ธ๋“œ์˜ ๊ฐœ์ˆ˜๊ฐ€ ์ฆ๊ฐ€ํ•  ์ˆ˜๋ก ํ–‰๋ ฌ์˜ ํฌ๊ธฐ๊ฐ€ ๊ณ„์† ๋Š˜์–ด๋‚˜๊ฒŒ ๋˜๋ฉฐ.. 2022. 11. 24.
[CS224W] Message Passing and Node classification 1๏ธโƒฃ 5๊ฐ• ๋ณต์Šต ๐Ÿ”นMain Topic : Node classification • ๋ช‡๊ฐœ์˜ ๋…ธ๋“œ์— ๋ ˆ์ด๋ธ”์ด ์ฃผ์–ด์งˆ ๋•Œ, ๋‹ค๋ฅธ ๋ชจ๋“  ๋…ธ๋“œ์˜ ๋ ˆ์ด๋ธ”์„ ์˜ˆ์ธกํ•˜๋Š” node classification Task ๐Ÿ‘‰ Semi supervised node classification : ๋ผ๋ฒจ๋ง๋œ ๋…ธ๋“œ์™€ ๊ทธ๋ ‡์ง€ ์•Š์€ ๋…ธ๋“œ๋ฅผ ๋™์‹œ์— ์‚ฌ์šฉํ•˜๋Š” ๋ถ„๋ฅ˜๋ฌธ์ œ • Message Passing ๋ฐฉ๋ฒ•์„ ํ†ตํ•ด ๋…ธ๋“œ ๊ฐ„์˜ correlation (dependencies) ์„ ๊ฐ€์ •ํ•˜์—ฌ ๋ ˆ์ด๋ธ”์„ ์˜ˆ์ธกํ•œ๋‹ค. • correlation : ๋น„์Šทํ•œ ๋…ธ๋“œ๋Š” ์ง์ ‘์ ์œผ๋กœ ์—ฐ๊ฒฐ๋˜์–ด ์žˆ๊ฑฐ๋‚˜ ๊ทผ์ ‘ํ•œ ์œ„์น˜์— ์กด์žฌํ•œ๋‹ค๋Š” ์˜๋ฏธ๋กœ, ์ฃผ๋ณ€ ๋…ธ๋“œ๊ฐ€ ๊ฐ™์€ ๋ ˆ์ด๋ธ”์— ์†ํ•  ๋•Œ ์ƒ๊ด€๊ด€๊ณ„๊ฐ€ ์กด์žฌํ•œ๋‹ค๊ณ  ๋งํ•  ์ˆ˜ ์žˆ๋‹ค. • Applications : ๋ฌธ์„œ ๋ถ„๋ฅ˜, ํ’ˆ์‚ฌํƒœ๊น…, link pre.. 2022. 11. 17.
[CS224W] PageRank 1๏ธโƒฃ PageRank Citation Ranking ๋…ผ๋ฌธ ๐Ÿ”น Summary • ์ž์‹ ์˜ ๊ฒ€์ƒ‰์–ด์™€ ๊ฐ€์žฅ ์ž˜ ์–ด์šธ๋ฆฌ๋Š” ํŽ˜์ด์ง€๋ฅผ ์ฐพ๊ธฐ์œ„ํ•œ PageRank • ์–ผ๋งˆ๋‚˜ ๋งŽ์€ ์‚ฌ์ดํŠธ๋“ค์ด ์ฐธ์กฐํ–ˆ๋Š”์ง€ + ์ฐธ์กฐํ•œ ์‚ฌ์ดํŠธ๋“ค์˜ ์˜ํ–ฅ๋ ฅ์€ ์–ด๋–ป๊ฒŒ ๋˜๋Š”์ง€ = Relative importance of Web pages • PageRank : ์›น ํŽ˜์ด์ง€๋“ค์˜ ์ˆœ์œ„๋ฅผ ๋งค๊ธฐ๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜ from link structure (backlinks) โ†ช helps search engines and users quickly make sense of the vast heterogeneity of the WWW โ†ช Applications : Search, browsing, traffic estimation โ†ช ๊ฐ ํŽ˜์ด์ง€์˜ rank ๋Š” ๊ณ ๋ฅด๊ฒŒ ๋ถ„๋ฐฐ๋œ๋‹ค... 2022. 11. 2.
[CS224W] 1๊ฐ• Machine Learning With Graphs 1๏ธโƒฃ Why Graphs ๐Ÿ”น Graph • Graphs are a general language for describing and analyzing entities with relations/interactions • ์—”ํ‹ฐํ‹ฐ์˜ ๊ด€๊ณ„์™€ ์ƒํ˜ธ์ž‘์šฉ์„ ๋ถ„์„ํ•˜๊ณ  ๋ฌ˜์‚ฌํ•  ์ˆ˜ ์žˆ๋Š” ์–ธ์–ด ๐Ÿ”น Many Types of Data are Graphs • ๋งŽ์€ ๋ฐ์ดํ„ฐ๊ฐ€ ๋„คํŠธ์›Œํฌ ํ˜•ํƒœ๋กœ ์ด๋ฃจ์–ด์ ธ ์žˆ์Œ ๐Ÿ”น ๋„คํŠธ์›Œํฌ vs ๊ทธ๋ž˜ํ”„ • ๋„คํŠธ์›Œํฌ ( = Natural Graph) social network : ์‚ฌํšŒ ์—ฐ๊ฒฐ๋ง communication and transaction : ์ „์ž๊ธฐ๊ธฐ, ํœด๋Œ€ํฐ, ๊ธˆ์œต๊ฑฐ๋ž˜ Biomedicine : ์œ ์ „์ž, ๋‹จ๋ฐฑ์งˆ ์ƒํ˜ธ์ž‘์šฉ์„ ํ†ตํ•œ ์ƒ๋ช… ์กฐ์ ˆ Brain connection : ์ˆ˜์‹ญ์–ต ๋‰ด๋Ÿฐ๋“ค ์‚ฌ์ด์˜ ์—ฐ๊ฒฐ์„ฑ.. 2022. 10. 11.
[CS224W] NetworkX , pytorch geometric Tutorial 1๏ธโƒฃ NetworkX Tutorial ๐Ÿ”น NetworkX https://networkx.org/ NetworkX — NetworkX documentation NetworkX is a Python package for the creation, manipulation, and study of the structure, dynamics, and functions of complex networks. networkx.org • Software for complex networks • ์ •ํ˜•, ๋น„์ •ํ˜• ๋ฐ์ดํ„ฐ๋ฅผ ๋„คํŠธ์›Œํฌ์— ์ž…๋ ฅํ•  ์ˆ˜ ์žˆ๋‹ค. • ๋‹ค์–‘ํ•œ ์œ ํ˜•์˜ ๋„คํŠธ์›Œํฌ๋ฅผ ์ƒ์„ฑํ•  ์ˆ˜ ์žˆ๋‹ค. • analyze network structure, build network models, design new network alg.. 2022. 10. 7.
Pytorch Geometric Basic code ๐Ÿ“Œ ์•„๋ž˜ ๋ธ”๋กœ๊ทธ์˜ ์ฝ”๋“œ์™€ Pytorch Geometric ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ ์„ค๋ช…์„ ์ฐธ๊ณ ํ•ด ๊ณต๋ถ€ํ–ˆ์Šต๋‹ˆ๋‹ค. https://baeseongsu.github.io/posts/pytorch-geometric-introduction/ ์˜ˆ์ œ๋ฅผ ํ†ตํ•ด ์•Œ์•„๋ณด๋Š” PyTorch Geometric 5 Basic Concepts ๋‹ค์Œ ๊ธ€์€ PyTorch Geometric ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ ์„ค๋ช…์„œ์— ์žˆ๋Š” Introduction by Example ๋ฅผ ์ฐธ๊ณ ํ•˜์—ฌ ์ž‘์„ฑํ–ˆ์Šต๋‹ˆ๋‹ค. baeseongsu.github.io https://pytorch-geometric.readthedocs.io/en/latest/notes/introduction.html# Introduction by Example — pytorch_geometric documentatio.. 2022. 9. 30.
728x90