๋ณธ๋ฌธ ๋ฐ”๋กœ๊ฐ€๊ธฐ

1๏ธโƒฃ AI•DS/๐Ÿ“• ๋จธ์‹ ๋Ÿฌ๋‹12

[04. ๋ถ„๋ฅ˜] GBM, XGboost 05. GBM ๐Ÿ“Œ ๊ฐœ์š” ๋ฐ ์‹ค์Šต ๐Ÿ’ก ๋ถ€์ŠคํŒ… ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์—ฌ๋Ÿฌ๊ฐœ์˜ ์•ฝํ•œ ํ•™์Šต๊ธฐ๋ฅผ ์ˆœ์ฐจ์ ์œผ๋กœ ํ•™์Šต - ์˜ˆ์ธกํ•˜๋ฉด์„œ ์ž˜๋ชป ์˜ˆ์ธกํ•œ ๋ฐ์ดํ„ฐ์— ๊ฐ€์ค‘์น˜ ๋ถ€์—ฌ๋ฅผ ํ†ตํ•ด ์˜ค๋ฅ˜๋ฅผ ๊ฐœ์„ ํ•ด ๋‚˜๊ฐ€๋ฉด์„œ ํ•™์Šตํ•˜๋Š” ๋ฐฉ์‹์ด๋‹ค. ๋Œ€ํ‘œ ์•Œ๊ณ ๋ฆฌ์ฆ˜ : AdaBoost, Gradient Booting Machine(GBM), XGBoost, LightGBM, CatBoost 1๏ธโƒฃ AdaBoost → ์˜ค๋ฅ˜ ๋ฐ์ดํ„ฐ์— ๊ฐ€์ค‘์น˜๋ฅผ ๋ถ€์—ฌํ•˜๋ฉด์„œ ๋ถ€์ŠคํŒ…์„ ์ˆ˜ํ–‰ํ•˜๋Š” ๋Œ€ํ‘œ์ ์ธ ์•Œ๊ณ ๋ฆฌ์ฆ˜ (๊ต์žฌ ๊ทธ๋ฆผ ํ™•์ธ) from sklearn.ensemble import AdaBoostClassifier from sklearn.metrics import accuracy_score clf = AdaBoostClassifier(n_estimators=30, random_state=10.. 2022. 3. 14.
[01,02] ๋จธ์‹ ๋Ÿฌ๋‹ ๊ฐœ์š” 01. ํŒŒ์ด์ฌ ๊ธฐ๋ฐ˜์˜ ๋จธ์‹ ๋Ÿฌ๋‹๊ณผ ์ƒํƒœ๊ณ„ ์ดํ•ด import numpy as np ๐Ÿ‘€ Numpy ํ•จ์ˆ˜ ๋ฐ ๋ฉ”์„œ๋“œ np.array() np.arange() np.zeros() np.ones() ๐Ÿ‘€ ์ธ๋ฑ์‹ฑ [ ] , ์Šฌ๋ผ์ด์‹ฑ [ : ] ๐Ÿ‘€ ํ–‰๋ ฌ์˜ ์ •๋ ฌ : np.sort() , ndarray.sort(), np.argsort() ๐Ÿ‘€ ์„ ํ˜•๋Œ€์ˆ˜ ์—ฐ์‚ฐ : np.dot() import pandas as pd ๐Ÿ‘€ DataFrame ๋ฐ์ดํ„ฐ ๋ถˆ๋Ÿฌ์˜ค๊ธฐ ์ •๋ณด ํ™•์ธํ•˜๊ธฐ ๐Ÿ‘€ ์ •๋ ฌ, aggregation ํ•จ์ˆ˜, Groupby ์ ์šฉ DataFrame.sort_values( by = , ascending = True, inplace = True) ์—ฐ์‚ฐํ•จ์ˆ˜ : min , max, sum, median, count (โ€ป axis = 0 ํ–‰,.. 2022. 3. 13.
728x90