๋ณธ๋ฌธ ๋ฐ”๋กœ๊ฐ€๊ธฐ
1๏ธโƒฃ AI•DS/๐ŸฅŽ Casual inference

์ธ๊ณผ์ถ”๋ก ์˜ ๋ฐ์ดํ„ฐ ๊ณผํ•™ - ํ†ต์ œํ•จ์ˆ˜์™€ ์„ ํƒ๋ชจํ˜•

by isdawell 2023. 4. 26.
728x90

์ฐธ๊ณ ์˜์ƒ : Bootcamp 4-4.  ํ†ต์ œํ•จ์ˆ˜์™€ ์„ ํƒ๋ชจํ˜•  

 

 

โ–ธ Control function: selection bias correction method , LATE, 2SLS ์™€ ๋น„์Šทํ•˜๊ฒŒ Instrumental variable ์„ ํ™œ์šฉํ•œ๋‹ค. 

โ–ธ Heckman selection model : control function ์˜ special case 

 

 

 

1. Causal inference = How to address Endogeneity 


 

โ—ฏ  Causal inference

 

•  Selection model ๊ณผ Causal Graph ๋Š” ์ธ๊ณผ์ถ”๋ก ์˜ Researcg design ๊ณผ ๋‹ค๋ฅธ ๊ด€์ ์„ ์ทจํ•˜๊ณ  ์žˆ๋‹ค. 

 

 

•  ๊ทธ๋Ÿฌ๋‚˜ LATE ์™€ selection model ์€ ๋ชจ๋‘ IV ๋ฅผ ํ™œ์šฉํ•œ๋‹ค. 

 

 

 

โ—ฏ  Second approach : Control function 

 

•  control function ๊ณผ selection model ์€ ๋„๊ตฌ๋ณ€์ˆ˜๋ฅผ ์š”๊ตฌํ•˜๋Š” ๊ฒƒ์€ ๋˜‘๊ฐ™๋‹ค. First stage ์—์„œ ๋„๊ตฌ๋ณ€์ˆ˜๊ฐ€ ํ•˜๋Š” ์—ญํ• ์€ 2SLS ์™€ ๋™์ผํ•˜๋‹ค. ๋„๊ตฌ๋ณ€์ˆ˜๋ฅผ ํ†ตํ•ด exogenous ํ•œ ๋ถ€๋ถ„๊ณผ endogenous ํ•œ ๋ถ€๋ถ„์„ ๋‚˜๋ˆˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜, second stage ์— ๋Œ€ํ•œ ์ ‘๊ทผ์ด ๋‹ค๋ฅด๋‹ค. LATE ๋Š” exogenous ํ•œ ๋ถ€๋ถ„์„ ๋–ผ์–ด์„œ ๋ถ„์„ํ•˜๋Š” ๋ฐ˜๋ฉด,

 

 

•  control function ์€  endogenous ํ•œ ๋ถ€๋ถ„๊ณผ ๊ด€๋ จ๋˜์–ด์žˆ๋Š” error term ์˜ selection bias ๋ฅผ ์˜ˆ์ธกํ•˜๊ณ ,  selection bias ๋ฅผ ํ†ต๊ณ„์ ์œผ๋กœ ๊ณ„์‚ฐํ•˜์—ฌ ์ง์ ‘ ํ†ต์ œํ•จ์œผ๋กœ์จ ์ธ๊ณผ์ถ”๋ก ์„ ํ•˜๊ณ ์ž ํ•˜๋Š” ๋ฐฉ๋ฒ•์ด๋‹ค. counterfactual ์— ๋Œ€ํ•œ ๊ฐ€์ • ๋“ฑ์ด ํ•„์š” ์—†์ด ํ†ต๊ณ„์ ์œผ๋กœ ์ ‘๊ทผํ•˜๋Š” ๋ฐฉ์‹์ด๋‹ค. 

 

•  control function์—์„œ selection bias ๊ฐ€ treatment group ํ˜น์€ sample ์— select ๋  ํ™•๋ฅ ์ด๋ผ๋ฉด (predicted residual represents the probability of being selected) ๊ทธ๋Ÿฌํ•œ ํŠน์ˆ˜ํ•œ ๊ฒฝ์šฐ๋ฅผ selection model ์ด๋ผ ๋ถ€๋ฅธ๋‹ค. 

 

•  selection model ์—์„œ probit modeling ์„ ํ•˜๋Š” ๊ฒƒ์ด Heckman selection model !

 

 

 

โ—ฏ  Second approach : Control function , ์ˆ˜์‹์œผ๋กœ ์‚ดํŽด๋ณด๊ธฐ 

 

 

[2]  First-stage equation : x = α0 + α1โˆ™z + v 

โ†ช  α0 + α1โˆ™z : exogenous ํ•œ ๋ถ€๋ถ„

โ†ช  v : endogenous ํ•œ ๋ถ€๋ถ„ (residual) 

โ†ช  v ๋ฅผ ํ™œ์šฉํ•ด์„œ u ๋ฅผ ์˜ˆ์ธกํ•œ๋‹ค. v ๋Š” endogenous ํ•œ ๋ถ€๋ถ„์ด๊ธฐ ๋•Œ๋ฌธ์—, error term u ์—์„œ endogenous ํ•œ ๋ถ€๋ถ„ (selection bias) ๋ฅผ ์˜ˆ์ธกํ•  ์ˆ˜ ์žˆ๋‹ค. 

 

 

[3] Predicting the endogenous portion of the error term : u = ρโˆ™v + e 

โ†ช  ρโˆ™v : selection bias 

โ†ช  e : ์ˆœ์ˆ˜ error term 

โ†ช  ρ : ์ด๋ก ์ ์œผ๋กœ๋Š” treatment ๋ฅผ ์„ค๋ช…ํ•˜๋Š”๋ฐ ๊ด€์ฐฐ๋˜์ง€ ์•Š๋Š” v ์™€, outcome ์„ ์„ค๋ช…ํ•˜๋Š”๋ฐ ๊ด€์ฐฐ๋˜์ง€ ์•Š๋Š” u์˜ correlation 

 

[4] 3๋ฒˆ ๊ฒฐ๊ณผ๋ฅผ 1์— ์ง‘์–ด๋„ฃ๋Š”๋‹ค : second-stage : y = β0 + β1โˆ™x + ρโˆ™v + e 

โ†ช  error term ์—์„œ selection bias ๋ถ€๋ถ„์„ ๋”ฐ๋กœ ๋–ผ์–ด์„œ, selection bias ๋ฅผ ์•ผ๊ธฐํ•˜๋Š” v๋ฅผ ๋„ฃ๊ณ  ์ง์ ‘ selection bias ๋ฅผ control ํ•˜์ž 

 

 

 

 

2. Two-stage Least Squares vs Control function 


 

โ—ฏ  ๋น„๊ต 

 

 

•  Potential outcome framework ์— ์ž…๊ฐํ•˜์—ฌ ๋„๊ตฌ๋ณ€์ˆ˜๋ฅผ ํ™œ์šฉํ•ด ์ธ๊ณผํšจ๊ณผ๋ฅผ ๋ถ„์„ํ•˜์ž → 2SLS 

•  ๋„๊ตฌ๋ณ€์ˆ˜๋ฅผ ํ™œ์šฉํ•ด ๋‚ด์ƒ์„ฑ์„ ์ง์ ‘ ์ œ์–ดํ•˜๊ธฐ ์œ„ํ•ด ํ†ต๊ณ„์ ์œผ๋กœ ๋ถ„์„ํ•˜์ž → Control function 

 

 

โ—ฏ  2SLS ์˜ ์žฅ๋‹จ์  

 

•  ์žฅ์  : LATE ๊ฐœ๋… ํ•˜์—์„œ potential outcome framework ์— ํ†ตํ•ฉ๋  ์ˆ˜ ์žˆ๋‹ค. RCT, ์ค€์‹คํ—˜ ๋“ฑ๊ณผ ๋™์ผํ•œ ์„ ์ƒ์—์„œ IV ๋ถ„์„ ๊ฒฐ๊ณผ๋ฅผ ํ•ด์„ํ•  ์ˆ˜ ์žˆ๋‹ค. 

•  ๋‹จ์  : monotonicity assumption (๋„๊ตฌ๋ณ€์ˆ˜์— ์˜ํ•ด์„œ ํ•œ๋ฐฉํ–ฅ์œผ๋กœ treatment ๊ฐ€ assign ๋˜์–ด์•ผ ํ•œ๋‹ค = compliers)์ด ์„ฑ๋ฆฝํ•ด์•ผ ํ•˜๊ธฐ ๋•Œ๋ฌธ์—, ๊ตฌํ•  ์ˆ˜ ์žˆ๋Š” ๊ฒƒ์€ compliers ๋ผ๋Š” ํŠน์ • ์ง‘๋‹จ์—์„œ์˜ local ํ•œ causal effect ์ด๊ธฐ ๋•Œ๋ฌธ์— ๋‹ค๋ฅธ ์ง‘๋‹จ์—์„œ ์ผ๋ฐ˜ํ™” ํ•˜๋Š”๊ฒŒ ์–ด๋ ต๋‹ค๋ฉด ํ•œ๊ณ„๊ฐ€ ์žˆ์„ ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ, non-linear model ๋กœ ์ถ”์ •ํ•˜๊ธฐ๊ฐ€ ์–ด๋ ต๋‹ค๋Š” ๋‹จ์ ์ด ์žˆ๋‹ค. 

 

 

โ—ฏ  Control function ์˜ ์žฅ๋‹จ์  

 

•  ์žฅ์  : ์ „์ฒด treatment ๋ฅผ ๋‹ค ์‚ฌ์šฉํ•˜๊ธฐ ๋•Œ๋ฌธ์—, selection bias ๋ฅผ ์ž˜ control ํ•  ์ˆ˜ ์žˆ๋‹ค๋ฉด, ATET ๋ฅผ ๊ตฌํ•  ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ ํ†ต๊ณ„์ ์œผ๋กœ ํ›จ์”ฌ ๋” ์œ ์—ฐํ•˜๊ฒŒ ํ™•์žฅ๋  ์ˆ˜ ์žˆ๋‹ค. 

•  ๋‹จ์  : ๊ตฌํ•œ causal effect ๊ฐ€ ๋ฌด์—‡์„ ์˜๋ฏธํ•˜๋Š”์ง€ ์ง๊ด€์ ์œผ๋กœ ํ•ด์„ํ•˜๊ธฐ๊ฐ€ ์–ด๋ ต๋‹ค. ํ†ต๊ณ„์ ์œผ๋กœ๋Š” ์ดํ•ด๊ฐ€ ๋˜์ง€๋งŒ, ๊ทธ๋ ‡๊ฒŒ ๊ตฌํ•œ ๊ฒƒ์ด ์–ด๋–ค causal effect ์ธ์ง€ ๋ชจํ˜ธํ•˜๋‹ค. 

 

 

 

 

 

3. Example 


 

โ—ฏ  Effects of previews/Reviews on E-book purchase 

 

 

•  control function: residual inclusion method (=selection bias correction model) 

 

 

 

โ—ฏ  Effects of Advertising on Sales 

 

 

•  endogeneity ๋‚˜ selection bias ๊ฐ€ ์žˆ์–ด์„œ ๊ทธ ์š”์ธ์ด confounder ๋กœ์„œ outcome ์—๋งŒ ์˜ํ–ฅ์„ ์ค„ ์ˆ˜ ์žˆ์ง€๋งŒ causal effect ์ž์ฒด์— ์˜ํ–ฅ์„ ์ฃผ๋Š” ์‚ฌ๋ก€๊ฐ€ ์žˆ์„ ์ˆ˜ ์žˆ๋‹ค. ์ฆ‰, error term (v) ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ์ถ”์ •ํ•  ๊ณ„์ˆ˜ (ϒ) ์ž์ฒด์—๋„ selection bias ๊ฐ€ ์„ž์—ฌ๋“ค์–ด๊ฐˆ ์ˆ˜ ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ์ด๋Ÿฌํ•œ ๊ฒƒ์„ ๊ณ ๋ คํ•˜๊ธฐ ์œ„ํ•ด, Extended model ์„ ๋ณด๋ฉด coefficient term ์—๋„ error term ์„ ์ถ”๊ฐ€ํ•œ ๊ฒƒ์„ ๋ณผ ์ˆ˜ ์žˆ๋‹ค. (P ๋Š” treatment variable) 

 

 

•  ๋‹ค์–‘ํ•œ ํ˜•ํƒœ๋กœ control ํ•œ๋‹ค. 

 

 

 

 

 

 

4. Heckman selection model : special case of control function 


 

 

•  selection ์ด 1 ์•„๋‹ˆ๋ฉด 0์ด๊ณ  (probability residual), ๊ทธ bianry ๋ฅผ probit ์œผ๋กœ ๋ชจ๋ธ๋ง ํ•œ๋‹ค๋ฉด binary probit model ์—์„œ์˜ residual v ๋ฅผ ์‹ค์ œ๋กœ ๊ณ„์‚ฐํ•ด๋ณด๋ฉด Inverse Mills ratio (=๋ˆ„์ ๋ถ„ํฌํ•จ์ˆ˜/ํ™•๋ฅ ๋ฐ€๋„ํ•จ์ˆ˜ ์˜ ์—ญ์ˆ˜) ๊ฐ€ ๋‚˜์˜จ๋‹ค. 

 

 

 

•  lambda : coefficient of Inverse Mills ratio : -0.14 (์Œ์ˆ˜) : first stage ์—์„œ ๋‹ค๊ฐํ™”์— ์˜ํ–ฅ์„ ์ฃผ๋Š” ๊ด€์ธก๋˜์ง€ ์•Š์€ ์š”์ธ๊ณผ outcome ์ธ firm value ์— ์˜ํ–ฅ์„ ์ฃผ๋Š” ๊ด€์ธก๋˜์ง€ ์•Š์€ ์š”์ธ์ด ์Œ์˜ ์ƒ๊ด€๊ด€๊ณ„์— ์žˆ๋‹ค. ์ฆ‰, ๋‹ค๊ฐํ™”๋ฅผ ํ•˜๋Š” ๊ฒฝํ–ฅ์ด ๋†’์€ ๊ธฐ์—…๋“ค์€ firm value ๊ฐ€ ๋‚ฎ์€ ๊ธฐ์—…๋“ค์ด ๋งŽ๋‹ค. 

 

 

 

728x90

๋Œ“๊ธ€