๋ณธ๋ฌธ ๋ฐ”๋กœ๊ฐ€๊ธฐ
1๏ธโƒฃ AI•DS/๐ŸฅŽ Casual inference

์ธ๊ณผ์ถ”๋ก ์˜ ๋ฐ์ดํ„ฐ ๊ณผํ•™ - ํšŒ๊ท€๋ถˆ์—ฐ์†

by isdawell 2023. 4. 26.
728x90

์ฐธ๊ณ ์˜์ƒ : Bootcamp 4-3.  ํšŒ๊ท€ ๋ถˆ์—ฐ์† 

 

 

 

 

1. RD


 

โ—ฏ  Regression Discontinuity 

 

•  Discontinuous ๊ฐ€ ๋ฐœ์ƒํ•˜๋ฉด ๊ทธ๊ฒƒ์„ ๊ธฐ์ ์œผ๋กœ ์ธ๊ณผ์ถ”๋ก ์„ ์ง„ํ–‰ํ•˜๋Š” ๋ฐฉ๋ฒ• 

•  Running variable = assignment variable = Forcing variable : Discontinuity ๊ฐ€ ๋ฐœ์ƒํ•˜๋Š” ๋ณ€์ˆ˜ 

 

 

•  RD ์—์„œ์˜ counterfactual : running variable ์ด ์—†์—ˆ์„ ๋•Œ๋ฅผ ๊ฐ€์ •ํ•œ ์ถ”์ด (์ ์„ )

•  counterfactual (์ ์„ )๊ณผ treatment ๋ฅผ ๋ฐ›์•„์„œ ๋‚˜์˜จ (์‹ค์„ ) ์ฐจ์ด๊ฐ€ causal effect ์ด๋‹ค. 

 

 

 

โ—ฏ  Example of discontinuity 

 

•  ์Œ์ฃผ์™€ ๊ฑด๊ฐ•/์‚ฌ๋ง ์‚ฌ์ด์˜ ์ธ๊ณผํšจ๊ณผ 

 

 

•  ๋ฏธ๊ตญ์—์„œ๋Š” ๋ฒ•์ ์œผ๋กœ 21์„ธ๋ฅผ ๊ธฐ์ค€์œผ๋กœ ์Œ์ฃผ๋ฅผ ํ—ˆ์šฉํ•œ๋‹ค. 21์„ธ ์ง์ „์˜ ์‚ฌ๋žŒ๋“ค, 21์„ธ ์งํ›„์˜ ์‚ฌ๋žŒ๋“ค์˜ ํŠน์„ฑ์€ ๋น„์Šทํ•  ๊ฒƒ์ด๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ 21์„ธ๋ฅผ ๊ธฐ์ ์œผ๋กœ ์šด์ „์‚ฌ๊ณ  ์‚ฌ๋ง๋ฅ ์ด jump ๋ฅผ ๋ณด์ด๊ณ  ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ์Œ์ฃผ๊ฐ€ ์šด์ „์‚ฌ๊ณ ์˜ ์‚ฌ๋ง๋ฅ ์— ์ธ๊ณผ์ ์ธ ํšจ๊ณผ๊ฐ€ ์žˆ๋‹ค๊ณ  ๋ณผ ์ˆ˜ ์žˆ์„ ๊ฒƒ์ด๋‹ค. 

 

 

 

โ—ฏ  RD Estimation strategies 

 

 

•  Discontinuity ๊ฐ€ ์—†์„ ๋•Œ์˜ running variable ์—์„œ์˜ ์ถ”์„ธ๋ฅผ ๊ฐ€์ง€๊ณ , discontinuity ๊ฐ€ ์žˆ์„ ๋•Œ๋กœ extrapolate ๋ฅผ ํ•ด์„œ counterfactual ์„ ๊ตฌํ•œ๋‹ค. ๊ตฌํ•˜๋Š” ๋ฐฉ๋ฒ•์€ ์—ฌ๋Ÿฌ๊ฐ€์ง€์ด๋‹ค. 

 

•  Bandwidth : Discontinuity ์ฃผ๋ณ€์œผ๋กœ ์–ด๋Š ๋ฒ”์œ„๊นŒ์ง€ ๊ณ ๋ คํ•˜๋Š๋ƒ 

โ†ช  ์ „์ฒด ๊ตฌ๊ฐ„(global) ์„ ๋ชจ๋‘ ํ™œ์šฉํ•  ์ˆ˜๋„ ์žˆ๊ณ , ํŠน์ • ๊ตฌ๊ฐ„ (local) ๋งŒ์„ ๋ณผ ์ˆ˜๋„ ์žˆ๋‹ค. ์ด์ „์˜ ์Œ์ฃผ ๊ด€๋ จ ์ธ๊ณผ์ถ”๋ก  ์˜ˆ์‹œ ๊ทธ๋ž˜ํ”„์˜ ๊ฒฝ์šฐ์—๋Š” 19์„ธ๋ถ€ํ„ฐ 23์„ธ๊นŒ์ง€์˜ ํŠน์ • ๊ตฌ๊ฐ„๋งŒ์„ ๊ณ ๋ คํ•˜๊ณ  ์žˆ๋‹ค. 

 

•  Modeling of running variable: running variable ์„ ์–ด๋–ป๊ฒŒ ๋ชจ๋ธ๋ง ํ•  ๊ฒƒ์ธ๊ฐ€ 

โ†ช  Parametric : functional form ์„ ๊ฐ€์ • (regression ์„ ํ†ตํ•œ ๋ชจ๋ธ๋ง) 

โ†ช  Non-parametric : ๊ฐ€๋ น ๊ธฐ์ค€ treatment ์ด์ „๊ณผ ์ดํ›„์˜ ํ‰๊ท ๊ฐ’์„ ํ†ตํ•ด ์ธ๊ณผ์ถ”๋ก ์„ ํ•˜๋Š” ๊ฒฝ์šฐ 

 

•  bandwidth โ‡จ cut-off ์ฃผ๋ณ€์˜ ๋ฒ”์œ„๋ฅผ ์ค„์—ฌ์„œ ๋ถ„์„ํ•˜๋ฉด ์œ ๋ฆฌํ•  ๊ฒƒ์ด๋‹ค. discontinuity ๋ฅผ ๊ธฐ์ค€์œผ๋กœ treatment ์™€ control ์ด ๋‚˜๋‰˜๋Š”๋ฐ, ๋ฒ”์œ„๋ฅผ ์ค„์ผ์ˆ˜๋ก discontinuity cut off ๋ฅผ ์ค‘์‹ฌ์œผ๋กœ ํŠน์„ฑ์ด ๋น„์Šทํ•ด์งˆ ๊ฒƒ์ด๋‹ค. ๋ฒ”์œ„๋ฅผ ๋Š˜๋ฆด์ˆ˜๋ก ํŠน์„ฑ์ด ๋น„์Šทํ•ด์ง€์ง€ ์•Š์„ ์ˆ˜ ์žˆ๋‹ค. ๊ฐ€๋ น ์ด์ „์˜ ์Œ์ฃผ ๊ด€๋ จ ์ธ๊ณผ์ถ”๋ก  ์˜ˆ์‹œ ๊ทธ๋ž˜ํ”„์—์„œ ๊ณ ์กธ~๋Œ€ํ•™์ƒ ์‚ฌ์ด (ex. MZ ์„ธ๋Œ€) ์˜ ์‚ฌ๋žŒ๋“ค์˜ ํŠน์„ฑ์€ ๋น„์Šทํ•˜๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ bandwidth ๋ฅผ ์ค„์ด๋Š” ๊ฒƒ์˜ ๋ฌธ์ œ๋Š”, sample size ๊ฐ€ ๋„ˆ๋ฌด ์ž‘์•„์ง„๋‹ค๋Š” ๊ฒƒ์ด๋‹ค. 

 

•  selection bias ๊ฐ€ ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ์ธ์ •ํ•˜๊ณ , running variable ์— ๋”ฐ๋ผ ์–ด๋Š์ •๋„ ๋ณ€ํ• ์ง€ ์ถฉ๋ถ„ํžˆ ์˜ˆ์ธก ๊ฐ€๋Šฅํ•˜๋‹ค๋ฉด parametric (linear, 2์ฐจ์‹..) ๋ถ„์„์„ ์ง„ํ–‰ํ•œ๋‹ค. Global ํ•˜๊ฒŒ ๋ถ„์„ํ•œ๋‹ค๊ณ  ํ•˜๋ฉด ๊ฑฐ์˜ parametric ๋ฐฉ๋ฒ•์„ ์‚ฌ์šฉํ•ด์•ผ ํ•œ๋‹ค. Global experiment (๊ฐ€๋ น ์Œ์ฃผ ์˜ˆ์‹œ์—์„œ 0์„ธ~100์„ธ ๋ฅผ ๋ฒ”์œ„๋กœ ํ•œ๋‹ค๊ณ  ํ•˜๋ฉด, 21์„ธ ์ด์ „์˜ ํ‰๊ท  ์‚ฌ๊ณ  ํšŸ์ˆ˜์™€ 21์„ธ ์ดํ›„ ์‚ฌ๋žŒ๋“ค์˜ ํ‰๊ท ์‚ฌ๊ณ  ํšŸ์ˆ˜๋ฅผ ๋น„๊ตํ•˜๋Š” ๊ฒƒ์€ make sense ํ•˜์ง€ ์•Š๋‹ค) 

 

•  selection bias ์™€ sample size ๊ฐ„์˜ trade-off ๊ฐ€ ์กด์žฌํ•˜๊ธฐ ๋•Œ๋ฌธ์— ์ด๋ฅผ ๊ณ ๋ คํ•ด ์ ์ ˆํ•œ ๋ฐฉ๋ฒ•์„ ์„ ํƒํ•ด์•ผ ํ•œ๋‹ค. 

 

 

โ†ช  ์œ„์—์„œ local nonparametric (๋นจ๊ฐ„ ์ง์„  ๋ฒ”์œ„) ๋กœ ๋ณธ๋‹ค๋ฉด, discontinuity ๊ฐ€ ์—†๋‹ค๊ณ  ๊ฐ€์ •ํ–ˆ์„ ๋•Œ ์ง์„ ์ด ๊ณ„์† ์ผ์ •ํ•œ ์ƒ์ˆ˜๊ฐ’์„ ๊ฐ€์งˆ ์ˆ˜ ์žˆ์„ ๊ฒƒ์ด๋ผ ์˜ˆ์ธกํ•  ์ˆ˜ ์žˆ์œผ๋ฏ€๋กœ ๊ฒ€์ •์ƒ‰ ๊ตต์€ ์ง์„ ๋“ค ๊ฐ„์˜ ์ฐจ์ด๊ฐ€ causal effect ๊ฐ€ ๋  ์ˆ˜ ์žˆ๊ณ , Global nonparamtric (๋ฒ”์œ„ ์ „์ฒด) ๋กœ ๋ณธ๋‹ค๋ฉด, ์—ญ์‹œ discontinuity ๊ฐ€ ์—†๋‹ค๊ณ  ๊ฐ€์ •ํ–ˆ์„ ๋•Œ ์ง์„ ์ด ๊ณ„์† ์ผ์ •ํ•œ ์ƒ์ˆ˜๊ฐ’์„ ๊ฐ€์งˆ ์ˆ˜ ์žˆ์„ ๊ฒƒ์ด๋ผ ์˜ˆ์ธกํ•  ์ˆ˜ ์žˆ์œผ๋ฏ€๋กœ ๊ฒ€์ •์ƒ‰ ์‹ค์„  ๋“ค ๊ฐ„์˜ ์ฐจ์ด๊ฐ€ causal effect ๊ฐ€ ๋œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด๋Ÿฌํ•œ ๊ฒฝ์šฐ์—๋Š” ์ฐจ์ด๊ฐ€ ์ปค์ง€๊ธฐ ๋•Œ๋ฌธ์— sensitive ํ•  ์ˆ˜ ์žˆ๋‹ค. 

 

 

โ†ช  selection bias ๋ฅผ ์–ด๋– ํ•œ function ์œผ๋กœ ๋ณด์ •ํ•ด์ฃผ๋Š” parametric ํ•œ ๋ฐฉ๋ฒ•์œผ๋กœ, ์œ„์˜ ์˜ˆ์‹œ์ฒ˜๋Ÿผ local ํ•œ ๊ตฌ๊ฐ„์—์„œ linear function ์œผ๋กœ ๋ชจ๋ธ๋ง ํ•˜๋ฉด, ๋งŒ์•ฝ discontinuity ๊ฐ€ ์—†์—ˆ์„ ๋•Œ์— cutoff ๋ฅผ ๊ธฐ์ค€์œผ๋กœ ์™ผ์ชฝ ์‹ค์„ ์ด ๊ณ„์† ์ง์„ ์œผ๋กœ ์ด์–ด์งˆ ์ˆ˜ ์žˆ๊ณ , ์ด๋ฅผ discontinuity ๊ฐ€ ์žˆ์—ˆ์„ ๋•Œ์™€์˜ ์ฐจ์ด๋ฅผ ๊ณ„์‚ฐํ•œ ๊ฒƒ์ด causal effect ๊ฐ€ ๋  ์ˆ˜ ์žˆ๋‹ค. Global parametric ๋„ ๋งˆ์ฐฌ๊ฐ€์ง€! 

 

โ‡จ Local/Global, Prametric/Non-parametric ๋ฐฉ๋ฒ•์— ๋”ฐ๋ผ regression discontinuity ๊ฒฐ๊ณผ๋Š” ๋งŽ์ด ๋‹ฌ๋ผ์งˆ ์ˆ˜ ์žˆ๋‹ค. 

 

 

[์ฐธ๊ณ ]

 

 

 

 

 

โ—ฏ  RD ์™€ DID

 

•  Discontinuity ๊ฐ€ ์žˆ๋‹ค๊ณ  ํ•ด์„œ ๋ฌด์กฐ๊ฑด regression discontinuity ๋กœ ๋ถ„์„ํ•ด์•ผ ํ•˜๋Š” ๊ฒƒ์€ ์•„๋‹ˆ๋‹ค. 

 

 

•  Discontinuity ๊ฐ€ ์ ์šฉ๋œ ํŠน์ • treatment shock ์ด ์žˆ์–ด์„œ, treament ๊ฐ€ ํŠน์ • ์‹œ์ ์— ์žˆ์–ด์„œ treament ์ „ํ›„์˜ ๋ฐ์ดํ„ฐ๊ฐ€ ๊ด€์ฐฐ ๊ฐ€๋Šฅํ•˜๋‹ค๋ฉด DID ๋ฅผ ์ ์šฉํ•˜๋Š” ๊ฒƒ์ด ๋” ์ ์ ˆํ•˜๋‹ค. 

 

•  ์šฐ๋ฆฌ๋‚˜๋ผ ๊ฒŒ์ž„ ์…ง๋‹ค์šด์ œ ์ ์šฉ (16์„ธ ๋ฏธ๋งŒ) : 16์„ธ๋ฅผ ๊ธฐ์ค€์œผ๋กœ 3๋…„์”ฉ ์‚ดํŽด๋ด์„œ 13์„ธ~15์„ธ๋ฅผ ๊ฒŒ์ž„ ์…ง๋‹ค์šด์ œ์— ์˜ํ–ฅ์„ ๋ฐ›๋Š” treatment group, ๊ทธ ์ดํ›„ 16์„ธ~19์„ธ๋ฅผ control group ์œผ๋กœ ๋‚˜๋ˆ ๋ณผ ์ˆ˜ ์žˆ๋‹ค. 

•  RD sample ์„ ๊ตฌ์„ฑํ•˜๊ณ  DID ๋กœ ๋ถ„์„ 

 

•  ๋งŒ์•ฝ RD ์™€ DID ๋ฅผ ๋ชจ๋‘ ์‚ฌ์šฉ ๊ฐ€๋Šฅํ•œ ์กฐ๊ฑด์ด๋ผ๋ฉด, ์–ด๋– ํ•œ ๋ฐฉ๋ฒ•๋ก ์ด ๊ฐ€์ •์„ ์ž…์ฆํ•˜๊ธฐ ๋” ์‰ฌ์šด์ง€๋ฅผ ํŒ๋‹จํ•ด์„œ ๊ณ ๋ฅด๋ฉด ๋œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด๋Ÿฌํ•œ ์ธก๋ฉด์—์„œ DID ๊ฐ€ ๋” ์ข‹๋‹ค. DID ์˜ parallel assumption ์ด causal experiment ์ค‘์— ๊ฐ€์žฅ ์ž…์ฆํ•˜๊ธฐ ์‰ฌ์šด ๊ฒ€์ •์ด๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ์‹œ๊ฐํ™” ํ˜น์€ ํ†ต๊ณ„์  ๊ธฐ๋ฒ• (relative time model ๋“ฑ) ์œผ๋กœ ๊ฒ€์ฆ๊ฐ€๋Šฅํ•˜๋‹ค. 

 

 

 

 

 

2.  Identification assumption for RD 


 

โ—ฏ  ๊ฐ€์ • 

 

 

•  discontinuity ์ „ํ›„๋กœ ํŠน์„ฑ์ด ๋น„์Šทํ•ด์•ผ extrapolate ํ•  ์ˆ˜ ์žˆ๋‹ค. 

 

•  Non-parametric ์—์„œ์˜ ๊ฐ€์ • : cutoff ๋ฅผ ์ „ํ›„๋กœ treatment group ๊ณผ control group ์ด ์–ผ๋งˆ๋‚˜ treatment ๋ฅผ ์ œ์™ธํ•˜๊ณ  ๋น„๊ต ๊ฐ€๋Šฅํ•œ์ง€ (Ceteris paribus) ๋”ฐ์ ธ๋ณด๊ธฐ. ์ด๋Ÿฌํ•œ ๊ฐ€์ •์„ ๋งŒ์กฑ์‹œํ‚ค๊ธฐ ์œ„ํ•ด bandwidth ๋ฅผ ์ค„์ด๊ธฐ๋„ ํ•œ๋‹ค. 

 

•  Parametric ์—์„œ์˜ ๊ฐ€์ • : Ceteris paribus ๋ฅผ ์ถฉ์กฑ์‹œํ‚ค๋Š” ๊ฒƒ์„ ๋ฐ”๋ผ๋Š” ๊ฑด ์•„๋‹ˆ๋‹ค. ์ฐจ์ด๊ฐ€ ์žˆ์„ ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ์ธ์ •ํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ discontinuity ์ „ํ›„์˜ ์ฐจ์ด๊ฐ€ running variable ์— ๋Œ€ํ•œ function ์œผ๋กœ ์ „๋ถ€๋‹ค ์„ค๋ช…ํ•  ์ˆ˜ ์žˆ์–ด์•ผ ํ•œ๋‹ค. function ์„ ์–ด๋–ค๊ฑธ ์„ ํƒํ•˜๋Š๋ƒ์— ๋”ฐ๋ผ casual effect ํฌ๊ธฐ๊ฐ€ ๋‹ฌ๋ผ์งˆ ์ˆ˜ ์žˆ๊ธฐ ๋•Œ๋ฌธ์— sensitive ํ•˜๋‹ค. ๋˜ํ•œ ์–ด๋–ค ๊ฒƒ์ด true model ์ธ์ง€ ์•Œ๊ธฐ๋„ ์‰ฝ์ง€ ์•Š๋‹ค. ๋”ฐ๋ผ์„œ ์›ฌ๋งŒํ•˜๋ฉด RD์™€ DID ๋‘˜๋‹ค ์ ์šฉ ๊ฐ€๋Šฅํ•œ ์ƒํ™ฉ์ด๋ผ๋ฉด DID ๋ฅผ ์ ์šฉํ•˜๋Š”๊ฒŒ ์ข‹๋‹ค. 

 

 

 

 

โ—ฏ  Parametric assumption ์—์„œ true functional model ์„ ์ฐพ๋Š” ๋ฐฉ๋ฒ• : sensitivity test

 

 

•  ๊ฐ€๋Šฅํ•œ ๋Œ€๋ถ€๋ถ„์˜ functional form ์— ๋Œ€ํ•ด test ๋ฅผ ํ•ด์„œ, ๊ฐ€์žฅ robust ํ•œ ๊ฒฐ๊ณผ๋ฅผ ์„ ํƒ 

•  r_i : running variable, Y_i : outcome

 

 

• ๋™์ผํ•œ ๋ฐ์ดํ„ฐ์— ๋”ฐ๋ผ์„œ r,y ๋ฅผ ์–ด๋–ป๊ฒŒ ๋ชจ๋ธ๋ง์„ ํ•˜๋ƒ์— ๋”ฐ๋ผ ๊ฒฐ๊ณผ๊ฐ€ ๋‹ฌ๋ผ์ง„๋‹ค. bandwidth ๋ฅผ ์–ด๋–ป๊ฒŒ ์“ฐ๋Š๋ƒ๋„ ์˜ํ–ฅ์„ ๋ฏธ์นœ๋‹ค. ๋„ˆ๋ฌด ์˜ค๋ฒ„ํ”ผํŒ… ๋˜๊ฒŒ ๊ณ ์ฐจ์›์˜ ๋ชจ๋ธ์— ๋Œ€ํ•ด์„œ test ๋ฅผ ํ•˜์ง„ ์•Š๋Š”๋‹ค. 

 

 

 

 

 

 

3. Example of regression discontinuity 


 

โ—ฏ  ๋…ธ๋™์กฐํ•ฉ์ด ์ œํ’ˆ ํ•˜์ž์œจ์— ๋ฏธ์น˜๋Š” ์ธ๊ณผ์ ์ธ ํšจ๊ณผ 

 

โ‘  strategy 1 : Global/Local parametric, Binary 

 

 

•  ๋…ธ๋™์กฐํ•ฉ ๊ฒฐ์„ฑ์— ๋Œ€ํ•œ ํˆฌํ‘œ ๊ฒฐ๊ณผ์— ์˜ํ•œ ๋…ธ๋™ ์กฐํ•ฉ์˜ ๊ธฐ์—… ์ฐธ์—ฌ์œจ์ธ (0~100%) UnionWin_i,t ๋ฅผ running variable ๋กœ ํ™œ์šฉํ•˜๊ณ  ์žˆ๋‹ค. 50% ๋ฅผ ๊ธฐ์ค€์œผ๋กœ discontinuity ๊ฐ€ ๋ฐœ์ƒํ•œ๋‹ค. 

 

•  Industry dummy, year dummy ์™€ ๊ฐ™์€ control variable ์„ ์œ„ํ•ด Parametric ๋ฐฉ๋ฒ•์„ ์‚ฌ์šฉํ•œ๋‹ค. 

 

•  ๋ชจ๋“  ๊ฒฝ์šฐ๋ฅผ (0~100%) ๋‹ค ๋ถ„์„ํ•˜๋Š” ๊ฒƒ์ด Global ์ด๊ณ , ๋ฐ˜๋ฉด (42.5%, 57.5%) ์™€ ๊ฐ™์ด bandwidth ๋ฅผ ์ขํ˜€์„œ ๋ถ„์„ํ•˜๋Š” ๊ฒƒ์ด Local ์ด๋‹ค. ์–ด๋–ค bandwidth ๊ฐ€ ๊ฐ€์žฅ ์ ์ ˆํ•œ์ง€ ์—ฌ๋Ÿฌ ๊ตฌ๊ฐ„์„ ๊ฐ€์ง€๊ณ  ๋ชจ๋ธ๋ง์„ ํ•ด๋ณด๋Š” ๊ฒƒ์ด ์ผ๋ฐ˜์ ์ด๋‹ค. 

 

•  Imbens and Kalyanaraman ๋…ผ๋ฌธ → optimal ํ•œ bandwidth ๋ฅผ ์ฐพ์„ ์ˆ˜ ์žˆ๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆ 

 

 

 

โ‘ก strategy 2 : Global parametric, Linear & Quadratic 

 

 

•  ๋‹จ์ˆœํžˆ binary ๋กœ discontinuity ๋ฅผ ๋‚˜๋ˆ„๊ธฐ์—๋Š” ํŠน์„ฑ์ด ๋‹ค๋ฅผ ์ˆ˜ ์žˆ๋‹ค. ๋…ธ๋™ ์กฐํ•ฉ ๊ฒฐ์„ฑ์— ํˆฌํ‘œํ–ˆ๋Š”๋ฐ 10% ๋งŒ ์ฐฌ์„ฑํ•œ ๊ธฐ์—…๊ณผ 90%๋งŒ ์ฐฌ์„ฑํ•œ ๊ธฐ์—…์€ ํŠน์„ฑ์ด ๋‹ค๋ฅผ ์ˆ˜ ์žˆ๋‹ค. ๋‹จ์ˆœํžˆ binary ๋กœ ํ‰๊ท ์„ ๋น„๊ตํ•˜๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๊ณ , functional form ์œผ๋กœ modeling ์„ ํ•˜๊ณ  ์žˆ๋‹ค. 

 

•  P(pv, c) : running variable ๊ณผ outcome ๊ฐ„์˜ ๊ด€๊ณ„๋ฅผ polynomial ๋กœ ๋ชจ๋ธ๋ง ํ•œ ๊ฒฐ๊ณผ 

โ†ช Linear fit example (์™ผ์ชฝ) : γโˆ™Pโˆ™V 

โ†ช Quadratic fit example (์˜ค๋ฅธ์ชฝ) : γ1โˆ™Pโˆ™V + γ1โˆ™Pโˆ™V^2

 

 

 

 

 

4. Imperfect compliance : Fuzzy RD 


 

โ—ฏ  Fuzzy RD 

 

 

•  ํˆฌํ‘œ์œจ์ด 50% ๊ฐ€ ๋„˜์œผ๋ฉด ๋ฌด์กฐ๊ฑด ๋…ธ๋™์กฐํ•ฉ์ด ๊ฒฐ์„ฑ๋œ๋‹ค. binary = 1 โ‡จ sharp RD 

•  ๊ทธ๋Ÿฌ๋‚˜ ํ˜„์‹ค์—์„œ๋Š” ์œ„์˜ ์˜ˆ์‹œ์ฒ˜๋Ÿผ ๊น”๋”ํ•˜๊ฒŒ ๋‚˜๋‰˜์–ด์ง€๋Š” RD ๊ฐ€ ๊ฑฐ์˜ ์—†๋‹ค. 

•  Fuzzy RD : discontinuity ์— ์˜ํ•ด treatment ์™€ control ์ด ๋”ฑ ๋‚˜๋ˆ ์ง€๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๊ณ , treatment ๊ฐ€ ๋  ํ™•๋ฅ ์ด ๋ณ€ํ•˜๋Š” ๊ฒฝ์šฐ๋ฅผ ๋งํ•œ๋‹ค. ํ˜„์‹ค์—์„œ๋Š” Fuzzy RD ์ธ ๊ฒฝ์šฐ๊ฐ€ ๋งŽ๋‹ค. (ex. ๊ฒŒ์ž„ ์…ง๋‹ค์šด์ œ๊ฐ€ 16์„ธ ๋ฏธ๋งŒ์˜ ์•„์ด๋“ค์—๊ฒŒ ์ ์šฉ๋˜๋Š” ๊ฑด ์‚ฌ์‹ค์ด์ง€๋งŒ ์ด treatment ๊ฐ€ ๋ชจ๋“  ์•„์ด๋“ค์—๊ฒŒ ๋™์ผํ•œ ๊ฐ€์ค‘์น˜๋กœ ์ ์šฉ๋˜๋Š” ๊ฒƒ์€ ์•„๋‹ ์ˆ˜ ์žˆ๋‹ค. ์–ด๋–ค ์•„์ด๋“ค์€ ์ƒˆ๋ฒฝ๊นŒ์ง€ ๊ฒŒ์ž„์„ ์•ˆํ•˜๋Š” ์•„์ด๋“ค์ด ์žˆ์„ ์ˆ˜ ์žˆ๊ณ , ์–ด๋–ค ์•„์ด๋“ค์€ ํŽธ๋ฒ•์„ ์จ์„œ ๊ฒŒ์ž„์„ ํ•˜๋Š” ์•„์ด๋“ค์ด ์žˆ์„ ์ˆ˜ ์žˆ๋‹ค) 

 

 

โ—ฏ  Fuzzy RD ๋Š” LATE ๋ถ„์„์ด๋‹ค. 

 

โ‘  EX.1 

 

 

•  running variable ์—์„œ์˜ cutoff ๋ฅผ ๋„๊ตฌ๋ณ€์ˆ˜๋กœ ๋ณด๊ณ  LATE ๋ฅผ ์ˆ˜ํ–‰ํ•˜๋Š” ๊ฒƒ์ด๋‹ค. 

•  First stage : discontinuity ๋ฅผ ํ™œ์šฉํ•ด์„œ treatment ๋ฅผ ๋ฐ›์„ ํ™•๋ฅ ์„ ์˜ˆ์ธก 

•  Second stage : ์˜ˆ์ธก๊ฐ’์„ ํ™œ์šฉํ•ด์„œ second stage ์—์„œ๋Š” global/local , parametric/non-parametric ๋ถ„์„์„ ์ง„ํ–‰ํ•˜๋Š” ๊ฒƒ์ด๋‹ค. 

•  ๊ฐ€๋ น ๊ฒŒ์ž„ ์…ง๋‹ค์šด์ œ ์˜ˆ์‹œ์ฒ˜๋Ÿผ, 16์„ธ ์ดํ•˜์˜ ๋ชจ๋“  ์‚ฌ๋žŒ๋“ค์— ๋Œ€ํ•ด ์ ์šฉ๋˜๋Š” ๊ฒƒ์„ ๋ถ„์„ํ•˜๊ณ ์ž ํ•˜๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๋ผ, LATE ๋ถ„์„์ด๊ธฐ ๋•Œ๋ฌธ์—, ์ฆ‰ compliers ์— ๋Œ€ํ•œ ๋ถ„์„์ด๊ธฐ ๋•Œ๋ฌธ์— ๊ฒŒ์ž„์…ง๋‹ค์šด์ œ๊ฐ€ ์‹คํ–‰๋˜์–ด์„œ ๊ฒŒ์ž„์„ ๋œ ํ•˜๊ฒŒ ๋˜๋Š” ๊ฒฝ์šฐ์— ๋Œ€ํ•œ ์ธ๊ณผ์ถ”๋ก ์„ ํ•ด์„ํ•ด๋ณผ ์ˆ˜ ์žˆ๋‹ค.

•  Sharp RD ๋Š” 100% compliers ์— ๋Œ€ํ•œ ๋ถ„์„์ด๋‹ค. 

 

โ‘ก EX2. 

 

โ‘ข EX3.

 

 

 

 

๐Ÿ‘€ RD ๋Š” ๋„๊ตฌ๋ณ€์ˆ˜ ๋ถ„์„๊ณผ ํ•จ๊ป˜ ๊ฐ„๋‹ค.

 

 

728x90

๋Œ“๊ธ€