๋ณธ๋ฌธ ๋ฐ”๋กœ๊ฐ€๊ธฐ
1๏ธโƒฃ AI•DS/๐ŸฅŽ Casual inference

์ธ๊ณผ์ถ”๋ก ์˜ ๋ฐ์ดํ„ฐ ๊ณผํ•™ - ๋งค์นญ๊ณผ ์—ญํ™•๋ฅ  ๊ฐ€์ค‘์น˜

by isdawell 2023. 4. 21.
728x90

์ฐธ๊ณ ์˜์ƒ : Bootcamp 2-4.  ๋งค์นญ๊ณผ ์—ญํ™•๋ฅ  ๊ฐ€์ค‘์น˜ 

 

 

 

1. Matching 


 

•  Regression ์€ control variable๊ณผ selection bias์— ๋Œ€ํ•ด linear form์œผ๋กœ ๊ฐ€์ •ํ•˜๊ณ , control variable์„ conditioning ํ•จ์œผ๋กœ์จ ํŠน์„ฑ์„ ์œ ์‚ฌํ•˜๊ฒŒ ๋งŒ๋“ค์—ˆ๋‹ค๋ฉด matching ์€ functional form ์—†์ด ๋‹จ์ˆœํžˆ control variable์—์„œ ํŠน์„ฑ์ด ์œ ์‚ฌํ•œ ๊ฒƒ๋“ค์„ ์ง์ ‘์ ์œผ๋กœ ๋งค์นญํ•˜๋Š” ๋ฐฉ๋ฒ•์ด๋‹ค. ํ›จ์”ฌ ๋” ์ง๊ด€์ ์ธ ๋ฐฉ๋ฒ•์ด๋ผ ๋ณผ ์ˆ˜ ์žˆ๋‹ค. Flexible ํ•œ ํ˜•ํƒœ์ด๋‹ค. 

 

 

•  ์ฆ‰, ํšŒ๊ท€๋ถ„์„๊ณผ Matching ์€ functional form ์„ ๊ฐ€์ •ํ•˜๋Š๋ƒ ์•ˆ ํ•˜๋Š๋ƒ์˜ ์ฐจ์ด๋งŒ ์กด์žฌํ•œ๋‹ค. 

 

•  Matching ์„ ํ•˜๋Š” ๋ฐฉ๋ฒ•์€ ์—ฌ๋Ÿฌ ๊ฐ€์ง€๊ฐ€ ์žˆ๋Š”๋ฐ, ๊ฐ•์˜์—์„œ๋Š” 2๊ฐ€์ง€๋งŒ ์†Œ๊ฐœํ•˜๊ฒ ๋‹ค! 

 

 

 

2. Matching Method : PSM 


 

โ—ฏ  Propensity score matching 

 

•  Propensity score matching ์„ฑํ–ฅ๋„ ์ ์ˆ˜ ๋งค์นญ 

•  control variable ์ด ์ฃผ์–ด์ง„ ์ƒํƒœ์—์„œ treatment๋ฅผ ๋ฐ›์„ ํ™•๋ฅ  

•  Propensity score ๋ฅผ ๊ธฐ์ค€์œผ๋กœ treatment์—์„œ์˜ score์™€ control์—์„œ์˜ score ๊ฐ€ ๋น„์Šทํ•œ ๋ฐ์ดํ„ฐ๋“ค๋ผ๋ฆฌ ์„œ๋กœ ๋งค์นญํ•œ๋‹ค. 

•  logit ์ด๋‚˜ probit regression์„ ํ™œ์šฉํ•ด์„œ, treatment๋ฅผ ๋ฐ›์„ ๊ฑด์ง€ ์—ฌ๋ถ€๊ฐ€ y ๊ฐ€ ๋˜๊ณ , control variable์„ x๋กœ ๋‘์–ด์„œ 0~1 ์‚ฌ์ด์˜ ๊ฐ’์„ ๊ฐ–๋Š” ๊ฒฝํ–ฅ์ ์ˆ˜๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ๋‹ค. 

•  selection on observable ์ „๋žต์„ ๊ฐ€์ •ํ•˜๋Š” ๋ฐฉ๋ฒ•๋ก  : propensity score ๋ฅผ ๊ณ„์‚ฐํ•˜๊ธฐ ์œ„ํ•œ ๋ณ€์ˆ˜๋“ค์„ ๋ชจ๋‘ ์•Œ๊ณ  ์žˆ์–ด์•ผ ํ•˜๋Š” ๊ฒƒ์ด ์ „์ œ โ‡จ ๊ต‰์žฅํžˆ ๊ฐ•ํ•œ ๊ฐ€์ • 

 

 

•  propensity score ๊ฐ€ ์œ ์‚ฌํ•œ ๋ฐ์ดํ„ฐ๋งŒ ๋‚จ๋Š”๋‹ค. ์ด๋“ค์„ ํ†ตํ•ด ์ธ๊ณผ์ถ”๋ก ์„ ์ง„ํ–‰ํ•ด ๋ณผ ์ˆ˜ ์žˆ๋‹ค. 

•  ๋งค์นญ๋œ control group ๊ณผ treatment group์˜ ํ‰๊ท ์„ ๋‹จ์ˆœ ๋น„๊ตํ•ด๋„ ๋œ๋‹ค. 

 

 

โ—ฏ  Matching Method : Propensity score stratification 

 

 

•  ์•ž์„œ ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ propensity score ๋ฅผscore๋ฅผ ๊ตฌํ•œ ๋‹ค์Œ์—, ์ด score๋ฅผ ์ผ์ • ๊ตฌ๊ฐ„์œผ๋กœ ๋‚˜๋ˆ„์–ด์„œ, ๊ฐ ๊ตฌ์—ญ ๋‚ด์—์„œ control group๊ณผ treatment group์„ ๋น„๊ตํ•œ๋‹ค. ๋ชจ๋“  ๊ตฌ๊ฐ„์— ๋Œ€ํ•ด ํ‰๊ท ์„ ๋‚ด๋Š” ๋ฐฉ์‹์œผ๋กœ ์ตœ์ข… ๊ฒฐ๊ณผ๋ฅผ ์–ป๋Š”๋‹ค. 

 

•  ๊ทธ๋Ÿฌ๋‚˜ ์„ฑํ–ฅ์ ์ˆ˜๋งค์นญ์—์„œ ์„ฑํ–ฅ์ ์ˆ˜๊ฐ€ ์ •ํ™•ํ•˜๊ฒŒ ๊ตฌํ•ด์ง€๋Š”์ง€ ์ž์ฒด์— ๋Œ€ํ•ด ๋ถˆํ™•์‹ค์„ฑ (logit , probit ์„ ๋„์ž…ํ•ด์„œ ๊ตฌํ•˜๋Š” ๊ฒƒ์ด ๊ณผ์—ฐ ์˜ณ์€๊ฐ€) ์ด ๋งŽ๋‹ค. ์ตœ๊ทผ์—๋Š” ๋Œ€์•ˆ์œผ๋กœ CEM ์ด ๋งŽ์ด ์‚ฌ์šฉ๋œ๋‹ค. 

 

 

 

 

 

3. CEM 


 

•  Coarsened Exact Matching : ์–ด๋– ํ•œ ํ•จ์ˆ˜๋„ ๊ฐ€์ •ํ•˜์ง€ ์•Š๊ณ  ์ง๊ด€์ ์ธ ๋ฐฉ๋ฒ•์ด๋‹ค. ์„ฑํ–ฅ์ ์ˆ˜๋ฅผ ๊ตฌํ•˜๋Š” ๊ฒƒ๋„ ์•„๋‹ˆ๊ณ , probit ๊ฐ™์€ ๋ชจ๋ธ์„ ๊ฐ€์ •ํ•˜๋Š” ๊ฒƒ๋„ ์•„๋‹ˆ๋‹ค. ๋‹จ์ˆœํžˆ control variable ์ด ๋น„์Šทํ•œ ๊ฒƒ๋ผ๋ฆฌ ๋งค์นญ์‹œํ‚ค๋Š” ๊ฒƒ์ด๋‹ค. (A : ๋‚จ์ž, 175cm) - (B : ๋‚จ์ž, 175cm) ๋งค์นญ์ฒ˜๋Ÿผ control variable ์ด ์ง์ ‘์ ์œผ๋กœ ๊ฐ™์€ ์‚ฌ๋žŒ๋“ค๋ผ๋ฆฌ ๋งค์นญํ•˜๋Š” ๊ฒƒ์ด๋‹ค. 

 

 

•  ๋ณ€์ˆ˜๊ฐ€ ์—ฌ๋Ÿฌ ๊ฐœ๋ฉด ๋ชจ๋“  ๋ณ€์ˆ˜๊ฐ€ ์ •ํ™•ํ•˜๊ฒŒ ๊ฐ™์€ ๊ฒฝ์šฐ๋Š” ๊ฑฐ์˜ ์—†์„ ๊ฒƒ์ด๋‹ค. Control variable ์„ ๋ช‡ ๊ฐœ์˜ bin์œผ๋กœ ๋Š์Šจํ•˜๊ฒŒ ๋‚˜๋ˆ„์–ด, ๊ทธ ๊ตฌ๊ฐ„ ๋‚ด์—์„œ ์„œ๋กœ ๋งค์นญ์„ ํ•œ๋‹ค. ๊ฐ™์€ ๊ตฌ๊ฐ„ ๋‚ด์— ์žˆ๋Š” ๊ฐ’๋“ค์„ ๋งค์นญํ•จ์œผ๋กœ์จ Exact matching ์ด๊ธด ํ•˜์ง€๋งŒ ์กฐ๊ธˆ ๋Š์Šจํ•˜๊ฒŒ ๋งค์นญํ•˜์—ฌ ์—ฌ๋Ÿฌ ๊ฐœ์˜ ๋งค์นญ ๋ฐ์ดํ„ฐ๋ฅผ ์–ป๋Š”๋‹ค. 

 

•  ์–ด๋– ํ•œ ๊ฐ€์ •์— ์˜์กดํ•˜์ง€ ์•Š๊ธฐ ๋•Œ๋ฌธ์—, ์ง์ ‘์ ์œผ๋กœ ์œ ์‚ฌํ•˜๊ฒŒ ๋งŒ๋“ค ์ˆ˜ ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๊ตฌ๊ฐ„์— ๋Œ€ํ•œ ๋งค์นญ์„ ํ•˜๋”๋ผ๋„, ๋ชจ๋“  ๋ณ€์ˆ˜๋“ค์— ๋Œ€ํ•ด ๊ฐ ๋ณ€์ˆ˜ ๋ณ„๋กœ ๊ตฌ๊ฐ„์ด ๊ฐ™์•„์•ผ ํ•˜๋‹ˆ๊นŒ ๋งค์นญ๋˜๋Š” ๋ฐ์ดํ„ฐ์˜ ๊ฐœ์ˆ˜๋Š” ์—ฌ์ „ํžˆ ์ ๋‹ค. ๊ทธ๋ž˜์„œ ์•„์ง๊นŒ์ง€๋Š” PSM, CEM ์ค‘์— ๋ฌด์—‡์ด ๋” ์šฐ์›”ํ•˜๋‹ค๊ณ  ๊ฒฐ๋ก ๋‚ด๋ฆฌ๊ธฐ๋Š” ์–ด๋ ต๋‹ค. ํ˜„์žฌ ์—ฐ๊ตฌ์—์„œ๋Š” ์ด 2๊ฐ€์ง€๋ฅผ ๋ชจ๋‘ ํ™œ์šฉํ•˜๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋งŽ๋‹ค. 

 

 

 

4. Weighting 


 

โ—ฏ  Weighting 

 

•  Matching ์ด ์‚ฌ์šฉ๋˜์ง€ ๋ชปํ•˜๋Š” ๊ฒฝ์šฐ์—๋„, Weighting ์€ ์‚ฌ์šฉ ๊ฐ€๋Šฅํ•˜๋‹ค. 

 

•  Weighting ์€ propensity score ์˜ ์—ญ์ˆ˜๋งŒํผ์˜ ๊ฐ€์ค‘์น˜๋ฅผ ๋ถ€์—ฌํ•œ๋‹ค. treatment๋ฅผ ๋ฐ›์„ ํ™•๋ฅ ์ด ์ž‘์€ ๊ทธ๋ฃน์—๋Š” ๋” ๋งŽ์€ weight์„ ์ฃผ์–ด์„œ ํ™•๋ฅ ์„ ๋” ํ‚ค์šฐ๊ณ , treatment๋ฅผ ๋ฐ›์„ ํ™•๋ฅ ์ด ํฐ ๊ทธ๋ฃน์—๋Š” weight๋ฅผ ์ž‘๊ฒŒ ์ฃผ์–ด์„œ ํ™•๋ฅ ์„ ๋‚ฎ์ถ˜๋‹ค. treatment๋ฅผ ๋ฐ›์„ ํ™•๋ฅ ์„ ๋น„์Šทํ•˜๊ฒŒ ๋งŒ๋“ค์–ด ์ฃผ๊ฒ ๋‹ค๋Š” ๊ฒŒ weighting ๋ฐฉ๋ฒ•์ด๋‹ค. 

 

• Treatment ๋ฅผ ๋ฐ›์„ ํ™•๋ฅ ์˜ ์—ญ์ˆ˜ ๊ฐ’์„ ์ด์šฉํ•˜๊ธฐ ๋•Œ๋ฌธ์— "IPW : Inverse probability (=propensity score) weighting"๋ผ๊ณ ๋„ ๋ถ€๋ฅธ๋‹ค. 

 

 

•  ์„ฑ์ธ๋‚จ์„ฑ์ด treatment ๋ฅผ ๋ฐ›์„ ํ™•๋ฅ ์€ 1/5์ด๊ณ , ๋ฐ›์ง€ ๋ชปํ•  ํ™•๋ฅ ์€ 4/5์ด๋‹ค. treatment๋ฅผ ๋ฐ›์„ ํ™•๋ฅ ์ด ์ฐจ์ด๊ฐ€ ๋‚˜๋ฏ€๋กœ, ์ด์— ์—ญ์ˆ˜๋ฅผ ์ทจํ•ด์„œ ๊ฐ€์ค‘์น˜๋ฅผ ๋ถ€์—ฌํ•œ๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ ๊ฐ€์ค‘๋œ ๊ฒฐ๊ณผ๋ฅผ ๋ณด๋ฉด, treatment๋ฅผ ๋ฐ›์„ ํ™•๋ฅ ์€ 5/10, ๋ฐ›์ง€ ์•Š์„ ํ™•๋ฅ ๋„ 5/10๋กœ ๋™์ผํ•ด์ง„๋‹ค โ‡จ ๋™์ „ ๋˜์ง€๊ธฐ์™€ ๋น„์Šทํ•œ ์„ธํŒ…์ด ๋œ๋‹ค. 

 

 

 

โ—ฏ  Inverse Probability Weighting 

 

•  C : confounder, control variable (selection bias ๋ฅผ ์•ผ๊ธฐํ•˜๋Š” ๋ณ€์ˆ˜) โ‡จ Binary ํ˜•ํƒœ๋กœ ๊ฐ€์ • 

•  X : ์›์ธ๋ณ€์ˆ˜ โ‡จ Binary ํ˜•ํƒœ๋กœ ๊ฐ€์ •, Y : ๊ฒฐ๊ณผ๋ณ€์ˆ˜ 

 

 

 

•  100๊ฐœ์˜ ์ƒ˜ํ”Œ ์ค‘, C=1 ์ธ ๊ฒƒ์€ 60๊ฐœ, 0์ธ ๊ฒƒ์€ 40๊ฐœ โ‡จ ๊ฐ C์˜ ์กฐ๊ฑด ์•ˆ์—์„œ X (treatment)๊ฐ€ ๋‹ฌ๋ผ์ง : selection bias 

•  X ๊ฐ€ Y ์— ๋ฏธ์น˜๋Š” ์ธ๊ณผ์ ์ธ ํšจ๊ณผ : P(Y | X=1) - P(Y | X=0) โ‡จ ๊ทธ๋Ÿฌ๋‚˜ ์œ„์˜ ์˜ˆ์‹œ์—์„œ๋Š” Control variable ์„ ํ†ต์ œํ•˜์ง€ ์•Š์€ ์ƒํ™ฉ์ด๋ผ ์ธ๊ณผํšจ๊ณผ๋ผ๊ณ  ๋งํ•  ์ˆ˜ ์—†๋‹ค. 

 

 

•  Control variable ์ด selection bias ๋ฅผ ๋ชจ๋‘ ์„ค๋ช…ํ•  ์ˆ˜ ์žˆ๋‹ค๊ณ  ๊ฐ€์ •ํ•ด๋ณด๋ฉด, C๋ผ๋Š” ๋ณ€์ˆ˜๊ฐ€ selection bias ๋ฅผ ์ „๋ถ€ ์„ค๋ช…ํ•˜๋ฏ€๋กœ, C๋ฅผ control ํ•˜๋ฉด selection bias ๋ฅผ ์—†์•จ ์ˆ˜ ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋ฏ€๋กœ C=1 ์ธ ๊ฒฝ์šฐ ๋‚ด์—์„œ ๋น„๊ตํ•˜๊ณ , C=0 ์ธ ๊ฒฝ์šฐ ๋‚ด์—์„œ ๋น„๊ต๊ฐ€ ๊ฐ€๋Šฅํ•  ๊ฒƒ์ด๋‹ค. Control group ์ด ๊ฐ™์€ ๊ทธ๋ฃน ๋‚ด์—์„œ๋Š” Counterfactual ์„ ๋Œ€์ฒดํ•  ์ˆ˜ ์žˆ๋‹ค. 

 

 

•  Counterfactual ์„ ๋Œ€์ฒดํ•œ ํ…Œ์ด๋ธ”์€ ์œ„์™€ ๊ฐ™๋‹ค. ์ด๋ฅผ Pseudo-Population ์ด๋ผ๊ณ  ๋ถ€๋ฅธ๋‹ค. ํ•˜๋‚˜์˜ ์ˆซ์ž๋งŒ ์˜ˆ๋ฅผ๋“ค์–ด ์„ค๋ช…ํ•ด๋ณด์ž๋ฉด, (C=0 , X=0) ์ธ ๊ฒฝ์šฐ์—๋Š”, (C=0, X=1) ์ธ ๊ฒฝ์šฐ์—์„œ Y ๊ฐ€ 7:3 ์˜ ๋น„์œจ์„ ํ˜•์„ฑํ•˜๊ณ  ์žˆ์œผ๋ฏ€๋กœ Counterfactual ์˜ ๋Œ€์ฒด๋ฅผ 7, 3 ์œผ๋กœ ํ•  ์ˆ˜ ์žˆ๋Š” ๊ฒƒ์ด๋‹ค. 

 

•  Counterfactual ๋กœ ๋Œ€์ฒดํ•œ๋‹ค๋Š” ๊ฒƒ์˜ ์˜๋ฏธ : control variable ์ด ์ฃผ์–ด์ง„ ์ƒํƒœ์—์„œ์˜ treatment ๋ฅผ ๋ฐ›์„ ํ™•๋ฅ ์˜ ์—ญ์ˆ˜๋ฅผ ๊ณฑํ•˜๊ณ , treatment ๋ฅผ ๋ฐ›์ง€ ์•Š์„ ํ™•๋ฅ ์˜ ์—ญ์ˆ˜๋ฅผ ๊ณฑํ•˜๋Š” ๊ฑฐ์™€ ์ •ํ™•ํžˆ ๋™์ผํ•œ ์ ‘๊ทผ์ด๋‹ค. 

 

•  ๊ด€์ฐฐํ•  ์ˆ˜ ์—†๋Š” counterfactual ์„ control variable ์ด ๋™์ผํ•œ ๋‹ค๋ฅธ ์ง‘๋‹จ์˜ ๊ฐ’์œผ๋กœ ์น˜ํ™˜ํ•˜๋Š” ๊ฐœ๋…์ด treatment group ์—์„œ๋Š” propensity score ์˜ ์—ญ์ˆ˜๋ฅผ ๊ณฑํ•˜๊ณ  control group ์—์„œ๋Š” (1 - propensity score) ์˜ ์—ญ์ˆ˜๋ฅผ ๊ณฑํ•˜๋Š” ๊ฒƒ๊ณผ ๋˜‘๊ฐ™๋‹ค. 

 

 

 

•  C์— ๊ด€๊ณ„์—†์ด X๋ฅผ ๋ฐ›์„ ํ™•๋ฅ ์€ 50:50์ด ๋œ๋‹ค. random assignment ์™€ ๋™์ผํ•ด์ง„๋‹ค โ‡จ Control variable ์— independent ํ•˜๊ฒŒ ์™„์ „ํžˆ random assignment ๋œ๋‹ค. 

 

 

 

 

 

 

5. Weighting vs Regression/Matching 


 

 

•  ๊ธฐ์กด์˜ regression ์—์„œ control variable ์„ ํ†ต์ œํ•  ๋•Œ๋Š”, control variable ์„ ๊ณ ์ • ์‹œ์ผฐ๋‹ค. Matching ์—์„œ๋„ control variable ์˜ ๊ฐ’์ด ๊ฐ™๋„๋ก ๊ณ ์ •ํ–ˆ๋‹ค. ์ด ๋‘ ๋ฐฉ๋ฒ• ๋ชจ๋‘ control variable ์ด selection bias ๋ฅผ ๋ชจ๋‘ ์„ค๋ช…ํ•ด์ค€๋‹ค๋Š” ๊ฐ€์ • ํ•˜์—์„œ control variable ์˜ ๊ฐ’์„ ํ†ต์ œํ•จ์œผ๋กœ์จ selection bias ๋ฅผ ์—†์• ๋Š” ์ „๋žต์ด๋‹ค. ๋ฐ˜๋ฉด weighting ์€ selection bias ๋ฅผ ์•ผ๊ธฐํ•˜๋Š” control variable ์— independent ํ•˜๊ฒŒ ์ฒ˜์น˜๋ฐ›์„ ํ™•๋ฅ ์„ 50:50, ์ฆ‰ random assignment ์— ๊ฐ€๊น๊ฒŒ ๋งŒ๋“ ๋‹ค. 

 

•  Conditioning ์„ ํ•  ์ˆ˜ ์—†๋Š” ๊ฒฝ์šฐ๋ผ๋ฉด ์œ ์ผํ•˜๊ฒŒ ์“ธ ์ˆ˜ ์žˆ๋Š” ๊ฒƒ์€ weighting ๋ฐฉ๋ฒ•์ด๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ weighting ๋ฐฉ๋ฒ•์ด ํ•ญ์ƒ ์ข‹์€ ๊ฒฐ๊ณผ๋ฅผ ๋‚ด๋Š” ๊ฒƒ์€ ์•„๋‹ˆ๋‹ค. propensity score ๋ฅผ ์ •ํ™•ํ•˜๊ฒŒ ๊ณ„์‚ฐ๋˜์–ด์•ผ ํ•œ๋‹ค๋Š” ๊ฐ€์ •์ด ํ•„์š”ํ•˜๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. 

 

 

โ—ฏ  Comparison of methods 

 

 

 

 

โ—ฏ  CAVEAT: Last resort for causal inference 

 

•  ๊ด€์ฐฐ ๊ฐ€๋Šฅํ•œ ๋ณ€์ˆ˜๋“ค๋งŒ์„ ๊ฐ€์ง€๊ณ  ๊ด€์ฐฐ ๋ถˆ๊ฐ€๋Šฅํ•œ ๋ณ€์ˆ˜๋“ค๊นŒ์ง€ ์„ค๋ช…ํ•˜๋Š” ๊ฒƒ์€ ์–ด๋ ค์šธ ์ˆ˜ ์žˆ๋‹ค. 

•  ๊ด€์ฐฐ ๊ฐ€๋Šฅํ•œ ๋ณ€์ˆ˜๋“ค์ด ์–ด๋–ป๊ฒŒ selection bias ๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ํ†ต์ œํ•  ์ˆ˜ ์žˆ์„์ง€๋ฅผ ์„ค๋“ํ•˜๋Š”๋ฐ ์žˆ์–ด์„œ causal graph ๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ๊ฒƒ์ด ๋Œ€์•ˆ์ด ๋  ์ˆ˜ ์žˆ๋‹ค. 

 

 

•  RCT ๋ฅผ ํ•  ์ˆ˜ ์žˆ์œผ๋ฉด ํ•˜๋Š”๊ฒŒ ์ข‹์ง€๋งŒ, ํ•  ์ˆ˜ ์—†๋‹ค๋ฉด regression ์ด๋‚˜ matching ์„ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ๋‹ค. 

 

 

 

 

728x90

๋Œ“๊ธ€